Large eddy simulation of flame and thermal-acoustic characteristics in a strut-based scramjet with dynamic thickened flame model

被引:10
|
作者
Yuan, Mengcheng [1 ]
Wang, Ping [1 ]
Zhang, Yang [1 ]
Ferrante, Antonio [1 ,2 ]
机构
[1] Jiangsu Univ, Inst Energy Res, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Ctr Combust Ambiente Srl, I-70023 Gioia Del Colle, Bari, Italy
关键词
Supersonic combustion; Thermal-acoustic coupling; Large eddy simulation; Dynamic thickened flame model; Proper orthogonal decomposition; SUPERSONIC COMBUSTION; HYDROGEN-AIR;
D O I
10.1016/j.csite.2022.102560
中图分类号
O414.1 [热力学];
学科分类号
摘要
Supersonic combustion is a complex phenomenon with multi-physical coupling, and the thermal acoustic coupling under supersonic inflow is also a matter of concern. In this work, Large Eddy Simulation of a strut-stabilized model scramjet is performed with dynamic thickened flame combustion model, and an efficiency function accounting for both, wrinkling loss due to flame thickening and turbulence/flame interaction. The finite-rate chemistry model and a skeletal hydrogen reaction mechanism with 9 species and 27 reactions are adopted. The method allows to predict the complex physical in supersonic reactive flow efficiently and the results are in good agreement with experimental. A comprehensive analysis of the Damko center dot hler number, modified flame index and heat release rate is conducted to investigate the flame structure under shock waves condition, and the difference between heat release rate and reaction rate distributions in Mach number space is also observed. The oscillation characteristics in the strut-based scramjet is discussed mode by mode using the Proper Orthogonal Decomposition approach, and the results identify a mode at 4.997 kHz, in which the thermal-acoustic coupling found, while the stronger modes are the results of multiple factors, including auto-ignition, vortexes shedding and the resulting shock-waves oscillation.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Compressible Large Eddy Simulation of Thermoacoustic Instabilities in the PRECCINSTA Combustor Using Flamelet Generated Manifolds With Dynamic Thickened Flame Model
    Goevert, Simon
    Lipkowicz, Jonathan Timo
    Janus, Bertram
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2024, 146 (01):
  • [22] Large eddy simulation/thickened flame model simulations of a lean partially premixed gas turbine model combustor
    Zhang, Peiyu
    Park, Ji-Woong
    Wu, Bifen
    Zhao, Xinyu
    COMBUSTION THEORY AND MODELLING, 2021, 25 (07) : 1296 - 1323
  • [23] COMPRESSIBLE LARGE EDDY SIMULATION OF THERMOACOUSTIC INSTABILITIES IN THE PRECCINSTA COMBUSTOR USING FLAMELET GENERATED MANIFOLDS WITH DYNAMIC THICKENED FLAME MODEL
    Goevert, Simon
    Lipkowicz, Jonathan Timo
    Janus, Bertram
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 3B, 2023,
  • [24] Large Eddy Simulation of a Turbulent Spray Burner Using Thickened Flame Model and Adaptive Mesh Refinement
    Rezchikova, Aleksandra
    Mehl, Cedric
    Drennan, Scott
    Colin, Olivier
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2021, 143 (04):
  • [25] LARGE EDDY SIMULATION OF A TURBULENT SPRAY BURNER USING THICKENED FLAME MODEL AND ADAPTIVE MESH REFINEMENT
    Rezchikova, Aleksandra
    Mehl, Cedric
    Drennan, Scott
    Colin, Olivier
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 4C, 2020,
  • [26] Large eddy simulation of turbulent stratified combustion using dynamic thickened flame coupled with tabulated detailed chemistry
    Zhang, Hongda
    Yu, Zhou
    Ye, Taohong
    Cheng, Ming
    Zhao, Majie
    APPLIED MATHEMATICAL MODELLING, 2018, 62 : 476 - 498
  • [27] Large Eddy Simulation of Turbulent Premixed Swirling Flames Using Dynamic Thickened Flame with Tabulated Detailed Chemistry
    Hongda Zhang
    Taohong Ye
    Gaofeng Wang
    Peng Tang
    Minghou Liu
    Flow, Turbulence and Combustion, 2017, 98 : 841 - 885
  • [28] Large Eddy Simulation of Turbulent Premixed Swirling Flames Using Dynamic Thickened Flame with Tabulated Detailed Chemistry
    Zhang, Hongda
    Ye, Taohong
    Wang, Gaofeng
    Tang, Peng
    Liu, Minghou
    FLOW TURBULENCE AND COMBUSTION, 2017, 98 (03) : 841 - 885
  • [29] Development and Validation of a Thickened Flame Modeling Approach for Large Eddy Simulation of Premixed Combustion
    Strakey, Peter A.
    Eggenspieler, Gilles
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2010, 132 (07): : 1 - 9
  • [30] DEVELOPMENT AND VALIDATION OF A THICKENED FLAME MODELING APPROACH FOR LARGE EDDY SIMULATION OF PREMIXED COMBUSTION
    Strakey, Peter A.
    Eggenspieler, Gilles
    PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 2, 2009, : 833 - 844