"Not-so-popular" orthogonal pairs in genetic code expansion

被引:12
|
作者
Andrews, Joseph [1 ]
Gan, Qinglei [1 ]
Fan, Chenguang [1 ,2 ,3 ]
机构
[1] Univ Arkansas, Dept Chem & Biochem, Fayetteville, AR USA
[2] Univ Arkansas, Cell & Mol Biol Program, Fayetteville, AR USA
[3] Dept Chem & Biochem, CHEM 119,345 N Campus Dr, Fayetteville, AR 72701 USA
基金
美国国家卫生研究院;
关键词
aminoacyl-tRNA synthetases; genetic code expansion; noncanonical amino acids; orthogonal translation systems; tRNA; TRANSFER-RNA SYNTHETASE; SITE-SPECIFIC INCORPORATION; AMINO-ACID MUTAGENESIS; LEUCYL-TRANSFER-RNA; ESCHERICHIA-COLI; CRYSTAL-STRUCTURE; RATIONAL DESIGN; ACCEPTOR STEM; ENZYME; EVOLUTION;
D O I
10.1002/pro.4559
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During the past decade, genetic code expansion has been proved to be a powerful tool for protein studies and engineering. As the key part, a series of orthogonal pairs have been developed to site-specifically incorporate hundreds of noncanonical amino acids (ncAAs) into proteins by using bacteria, yeast, mammalian cells, animals, or plants as hosts. Among them, the pair of tyrosyl-tRNA synthetase/tRNA(Tyr) from Methanococcus jannaschii and the pair of pyrrolysyl-tRNA synthetase/tRNA(Pyl) from Methanosarcina species are the most popular ones. Recently, other "not-so-popular" orthogonal pairs have started to attract attentions, because they can provide more choices of ncAA candidates and are necessary for simultaneous incorporation of multiple ncAAs into a single protein. Here, we summarize the development and applications of those "not-so-popular" orthogonal pairs, providing guidance for studying and engineering proteins.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Breaking the deadlock in genetic code expansion
    Ya-Ming Hou
    Yuko Nakano
    Nature Chemical Biology, 2024, 20 : 406 - 407
  • [32] Genetic code expansion in the mouse brain
    Ernst, Russell J.
    Krogager, Toke P.
    Maywood, Elizabeth S.
    Zanchi, Roberto
    Beranek, Vaclav
    Elliott, Thomas S.
    Barry, Nicholas P.
    Hastings, Michael H.
    Chin, Jason W.
    NATURE CHEMICAL BIOLOGY, 2016, 12 (10) : 776 - +
  • [33] An evolved ribosome for genetic code expansion
    Caroline Köhrer
    Uttam L RajBhandary
    Nature Biotechnology, 2007, 25 : 745 - 746
  • [34] An evolved ribosome for genetic code expansion
    Kohrer, Caroline
    RajBhandary, Uttam L.
    NATURE BIOTECHNOLOGY, 2007, 25 (07) : 745 - 746
  • [35] Mammalian genetic code expansion: For and by viruses
    Chatterjee, Abhishek
    Kelemen, Rachel
    Zheng, Yunan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 250
  • [36] Reading and Writing the Ubiquitin Code Using Genetic Code Expansion
    Patel, Rishi S.
    Pannala, Nipuni M.
    Das, Chittaranjan
    CHEMBIOCHEM, 2024, 25 (11)
  • [37] Facile Expansion of the Variety of Orthogonal Ligand/Aptamer Pairs for Artificial Riboswitches
    Ogawa, Atsushi
    Inoue, Honami
    Itoh, Yu
    Takahashi, Hajime
    ACS SYNTHETIC BIOLOGY, 2023, 12 (01): : 35 - 42
  • [38] Optical orthogonal code design using genetic algorithms
    Ho, CK
    Lee, SW
    Singh, YP
    ELECTRONICS LETTERS, 2001, 37 (20) : 1232 - 1234
  • [39] A hybrid genetic algorithm for optical orthogonal code construction
    Ho, CK
    Singh, YP
    Lee, SW
    APPLIED ARTIFICIAL INTELLIGENCE, 2003, 17 (10) : 927 - 953
  • [40] Synthesis at the interface of virology and genetic code expansion
    Kelemen, Rachel
    Erickson, Sarah
    Chatterjee, Abhishek
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256