Virtual Machine Migration-Based Intrusion Detection System in Cloud Environment Using Deep Recurrent Neural Network

被引:7
|
作者
Srinivas, B., V [1 ]
Mandal, Indrajit [2 ]
Keshavarao, Seetharam [3 ]
机构
[1] Atria Inst Technol, Dept Informat Sci & Engn, Bengaluru 560024, Karnataka, India
[2] MINA Inst Engn & Technol, Dept Comp Sci & Engn, Myryalguda, Telangana, India
[3] RL Jallappa Inst Technol, Dodaballapur, India
关键词
Cloud computing; deep learning; FCM clustering; intrusion detection; VM migration; ANOMALY DETECTION SYSTEM; ALGORITHM; SELECTION; MODEL;
D O I
10.1080/01969722.2022.2122008
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Cloud system attracts users with the desired features, and in the meanwhile, cloud system may experience various security issues. An effective intrusion detection system is offered by the proposed Sail Fish Dolphin Optimization-based Deep Recurrent Neural Network (SFDO-based Deep RNN), which is utilized to identify anomalies in the cloud architecture. The developed SFDO is formed by integrating Sail Fish Optimizer (SFO) and Dolphin Echolocation (DE) algorithm. Virtual Machine (VM) migration and cloud data management are accomplished using ChicWhale algorithm. Some of the attribute features are collected from the cloud model such that these features are grouped using Fuzzy C-Means (FCM) clustering. The feature fusion process is carried out by a Deep RNN classifier that has been trained using the specified SFDO technique in order to achieve the intrusion detection mechanism. The approach with the lowest error value is thought to be the best approach for intruder detection, according to the fitness function. Using the BoT-IoT dataset, the proposed method's accuracy, detection rate (DR), and false-positive rate (FPR) were assessed. The results showed that it outperformed the previous methods with values of 0.9614, 0.9648, and 0.0429, respectively.
引用
收藏
页码:450 / 470
页数:21
相关论文
共 50 条
  • [41] An intrusion detection system for wireless sensor networks using deep neural network
    V. Gowdhaman
    R. Dhanapal
    Soft Computing, 2022, 26 : 13059 - 13067
  • [42] HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-Based Network Intrusion Detection System
    Khan, Muhammad Ashfaq
    PROCESSES, 2021, 9 (05)
  • [43] Deep Neural Network Based Real-Time Intrusion Detection System
    Sharuka Promodya Thirimanne
    Lasitha Jayawardana
    Lasith Yasakethu
    Pushpika Liyanaarachchi
    Chaminda Hewage
    SN Computer Science, 2022, 3 (2)
  • [44] Deep Neural Network-Based Intrusion Detection System through PCA
    Alotaibi, Shoayee Dlaim
    Yadav, Kusum
    Aledaily, Arwa N.
    Alkwai, Lulwah M.
    Dafhalla, Alaa Kamal Yousef
    Almansour, Shahad
    Lingamuthu, Velmurugan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [45] Intrusion detection system: a deep neural network-based concatenated approach
    Sharma, Hidangmayum Satyajeet
    Singh, Khundrakpam Johnson
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (10): : 13918 - 13948
  • [46] A hybrid Intrusion Detection System based on Sparse autoencoder and Deep Neural Network
    Rao, K. Narayana
    Rao, K. Venkata
    Reddy, P. V. G. D. Prasad
    COMPUTER COMMUNICATIONS, 2021, 180 : 77 - 88
  • [47] Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network
    Mendonca, Robson V.
    Teodoro, Arthur A. M.
    Rosa, Renata L.
    Saadi, Muhammad
    Melgarejo, Dick Carrillo
    Nardelli, Pedro H. J.
    Rodriguez, Demostenes Z.
    IEEE ACCESS, 2021, 9 : 61024 - 61034
  • [48] Intrusion Detection System Based on Fast Hierarchical Deep Convolutional Neural Network
    Mendonca, Robson V.
    Teodoro, Arthur A. M.
    Rosa, Renata L.
    Saadi, Muhammad
    Melgarejo, Dick Carrillo
    Nardelli, Pedro H. J.
    Rodriguez, Demostenes Z.
    IEEE Access, 2021, 9 : 61024 - 61034
  • [49] Analysis of Securing Edge-Cloud Computing and Network Based Deep Neural Intrusion Detection System as a Solution Model
    Girma, Anteneh
    Tamirat, Marshet
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, INTELLISYS 2024, 2024, 1065 : 438 - 451
  • [50] Intrusion Detection System Using Voting-Based Neural Network
    Mohammad Hashem Haghighat
    Jun Li
    Tsinghua Science and Technology, 2021, 26 (04) : 484 - 495