Tailbeat perturbations improve swimming efficiency in self-propelled flapping foils

被引:3
|
作者
Chao, Li-Ming [1 ,2 ,3 ]
Jia, Laibing [4 ]
Li, Liang [1 ,2 ,3 ]
机构
[1] Max Planck Inst Anim Behav, Dept Collect Behav, D-78464 Constance, Germany
[2] Univ Konstanz, Ctr Adv Study Collect Behav, D-78464 Constance, Germany
[3] Univ Konstanz, Dept Biol, D-78464 Constance, Germany
[4] Univ Strathclyde, Dept Naval Architecture Ocean & Marine Engn, Glasgow G4 0LZ, Scotland
关键词
swimming/flying; HYDRODYNAMICS; PERFORMANCE; ANIMALS; AIRFOIL; MODEL;
D O I
10.1017/jfm.2024.262
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Recent studies have shown that superimposing rhythmic perturbations to oscillating tailbeats could simultaneously enhance both the thrust and efficiency (Lehn et al., Phys. Rev. Fluids, vol. 2, 2017, p. 023101; Chao et al., PNAS Nexus, vol. 3, 2024, p. 073). However, these investigations were conducted with a tethered flapping foil, overlooking the self-propulsion intrinsic to real swimming fish. Here, we investigate how the high-frequency, low-amplitude superimposed rhythmic perturbations impact the self-propelled pitching and heaving swimming of a rigid foil. The swimming-speed-based Reynolds number ranges from 1400 to 2700 in our study, depending on superimposed perturbations and swimming modes. Numerical results reveal that perturbations significantly increase swimming speeds in both pitching and heaving motions, while enhancing efficiency exclusively in the heaving motion. Further derived scaling laws elucidate the relationships of perturbations with speeds, power costs and efficiency, respectively. These findings not only hypothesise the potential advantages of perturbations in biological systems, but also inspire designs and controls in biomimetic propulsion and manoeuvring within aquatic environments.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Intermittent swimming of two self-propelled flapping plates in tandem configuration
    Kang, Linlin
    Lu, Xi-Yun
    Cui, Weicheng
    PHYSICS OF FLUIDS, 2022, 34 (01)
  • [2] Self-propelled swimming droplets
    Dwivedi, Prateek
    Pillai, Dipin
    Mangal, Rahul
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2022, 61
  • [3] Collective behavior and hydrodynamic advantage of side-by-side self-propelled flapping foils
    Liu, Xuechao
    Liu, Kui
    Huang, Haibo
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [4] How wing compliance drives the efficiency of self-propelled flapping flyers
    Thiria, Benjamin
    Godoy-Diana, Ramiro
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [5] Swimming dynamics of a self-propelled droplet
    Li, Gaojin
    JOURNAL OF FLUID MECHANICS, 2022, 934
  • [6] Hydrodynamic interactions between two self-propelled flapping plates swimming towards each other
    Gong, Shixian
    Kang, Linlin
    Fan, Dixia
    Cui, Weicheng
    Lu, Xiyun
    ACTA MECHANICA SINICA, 2025, 41 (03)
  • [7] The performance of a flapping foil for a self-propelled fishlike body
    Paniccia, Damiano
    Padovani, Luca
    Graziani, Giorgio
    Piva, Renzo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] An energetics analysis of fish self-propelled swimming
    ZhongWei Wang
    YongLiang Yu
    BingGang Tong
    Science China(Physics,Mechanics & Astronomy), 2018, (07) : 95 - 98
  • [9] An energetics analysis of fish self-propelled swimming
    Wang, ZhongWei
    Yu, YongLiang
    Tong, BingGang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (07)
  • [10] The performance of a flapping foil for a self-propelled fishlike body
    Damiano Paniccia
    Luca Padovani
    Giorgio Graziani
    Renzo Piva
    Scientific Reports, 11