Learning to Aggregate Multi-Scale Context for Instance Segmentation in Remote Sensing Images

被引:9
|
作者
Liu, Ye [1 ,2 ]
Li, Huifang [1 ]
Hu, Chao [1 ]
Luo, Shuang [3 ]
Luo, Yan [2 ,4 ]
Chen, Chang Wen [2 ]
机构
[1] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
[3] Changjiang Spatial Informat Technol Engn Co Ltd, Wuhan 430074, Peoples R China
[4] Peng Cheng Lab, Dept Comp, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Instance segmentation; Feature extraction; Visualization; Task analysis; Aggregates; Pipelines; Feature pyramid networks; global context aggregation; instance segmentation; object detection; OBJECT DETECTION;
D O I
10.1109/TNNLS.2023.3336563
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of instance segmentation in remote sensing images, aiming at performing per-pixel labeling of objects at the instance level, is of great importance for various civil applications. Despite previous successes, most existing instance segmentation methods designed for natural images encounter sharp performance degradations when they are directly applied to top-view remote sensing images. Through careful analysis, we observe that the challenges mainly come from the lack of discriminative object features due to severe scale variations, low contrasts, and clustered distributions. In order to address these problems, a novel context aggregation network (CATNet) is proposed to improve the feature extraction process. The proposed model exploits three lightweight plug-and-play modules, namely, dense feature pyramid network (DenseFPN), spatial context pyramid (SCP), and hierarchical region of interest extractor (HRoIE), to aggregate global visual context at feature, spatial, and instance domains, respectively. DenseFPN is a multi-scale feature propagation module that establishes more flexible information flows by adopting interlevel residual connections, cross-level dense connections, and feature reweighting strategy. Leveraging the attention mechanism, SCP further augments the features by aggregating global spatial context into local regions. For each instance, HRoIE adaptively generates RoI features for different downstream tasks. Extensive evaluations of the proposed scheme on iSAID, DIOR, NWPU VHR-10, and HRSID datasets demonstrate that the proposed approach outperforms state-of-the-arts under similar computational costs. Source code and pretrained models are available at https://github.com/yeliudev/CATNet.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [41] Multi-scale optimization of the watershed algorithm in remote sensing image segmentation
    Zhao, Qiang, 1600, CAFET INNOVA Technical Society, 1-2-18/103, Mohini Mansion, Gagan Mahal Road,, Domalguda, Hyderabad, 500029, India (07):
  • [42] Multi-Scale PIIFD for Registration of Multi-Source Remote Sensing Images
    Gao C.
    Li W.
    Journal of Beijing Institute of Technology (English Edition), 2021, 30 (02): : 113 - 124
  • [43] Multi-Scale PIIFD for Registration of Multi-Source Remote Sensing Images
    Chenzhong Gao
    Wei LiChen
    Journal of Beijing Institute of Technology, 2021, 30 (02) : 113 - 124
  • [44] MASK DECOUPLED HEAD FOR INSTANCE SEGMENTATION IN REMOTE SENSING IMAGES
    Wang, Yuan
    Zhang, Xiangrong
    Zhang, Tianyang
    Zhu, Xiaoqian
    Tang, Xu
    Gao, Li
    Jiao, Licheng
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3123 - 3126
  • [45] Multi-scale building instance refinement extraction from remote sensing images by fusing with decentralized adaptive attention mechanism
    Jiang B.
    Hang W.
    Xu S.
    Wu Y.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (09): : 1504 - 1514
  • [46] A novel network for semantic segmentation of landslide areas in remote sensing images with multi-branch and multi-scale fusion
    Wang, Kai
    He, Daojie
    Sun, Qingqiang
    Yi, Lizhi
    Yuan, Xiaofeng
    Wang, Yalin
    APPLIED SOFT COMPUTING, 2024, 158
  • [47] Double-Branch Multi-Scale Contextual Network: A Model for Multi-Scale Street Tree Segmentation in High-Resolution Remote Sensing Images
    Zhang, Hongyang
    Liu, Shuo
    SENSORS, 2024, 24 (04)
  • [48] A multi-scale target detection method for optical remote sensing images
    Feng, Yanqing
    Wang, Lunwen
    Zhang, Mengbo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (07) : 8751 - 8766
  • [49] A multi-scale target detection method for optical remote sensing images
    Yanqing Feng
    Lunwen Wang
    Mengbo Zhang
    Multimedia Tools and Applications, 2019, 78 : 8751 - 8766
  • [50] Image Registration Based on Multi-Scale SIFT for Remote Sensing Images
    El Rube, Ibrahim A.
    Sharks, Maha A.
    Salem, Ashor R.
    2009 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, 2009, : 54 - 58