Bifunctional S-scheme CdSSe/Bi2WO6 heterojunction catalysts exhibit generalized boosting performance in photocatalytic degradation of tetracycline hydrochloride, photoelectrochemical and electrocatalytic hydrogen production

被引:27
|
作者
Yang, Shuai [1 ]
Yang, Han [2 ]
Zhang, Jun [1 ,3 ]
Lin, Jiacen [1 ]
Lu, Guoyu [1 ]
Zhang, Yujia [1 ]
Xi, Junhua [1 ]
Kong, Zhe [1 ]
Song, Lihui [4 ,5 ]
Xie, Haijiao [6 ]
机构
[1] Hangzhou Dianzi Univ, Coll Mat & Environm Engn, New Energy Mat Res Ctr, Hangzhou 310018, Peoples R China
[2] Hubei Univ Arts & Sci, Sch Phys & Elect Engn, Xiangyang 441053, Peoples R China
[3] Hangzhou Dianzi Univ, Key Lab Novel Mat Sensor Zhejiang Prov, Hangzhou 310018, Peoples R China
[4] Zhejiang Univ, Inst Adv Semicond, Hangzhou 311200, Zhejiang, Peoples R China
[5] Zhejiang Univ, ZJU Hangzhou Global Sci & Technol Innovat Ctr, Zhejiang Prov Key Lab Power Semicond Mat & Devices, Hangzhou 311200, Zhejiang, Peoples R China
[6] Hangzhou Yanqu Informat Technol Co Ltd, Y2,2nd Floor,Bldg 2,Xixi Legu Creat Pioneering Pk,, Hangzhou 310003, Peoples R China
基金
中国国家自然科学基金;
关键词
S; -scheme; Photocatalysis; Photoelectrochemistry; Electrocatalysis; CdSSe/Bi2WO6; VISIBLE-LIGHT-DRIVEN; OXYGEN VACANCY; EVOLUTION; ENERGY; WATER; TIO2; NANOSHEETS; HETEROSTRUCTURE; NANOMATERIALS; GENERATION;
D O I
10.1016/j.jallcom.2023.173306
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, by a simple method of hydrothermal synthesis, the CdSSe/Bi2WO6 S-scheme heterojunction catalyst is successfully obtained and the results are verified by XPS, EPR, band structure, etc. The S-scheme heterojunction can maintain the strong redox potential energy position of both catalysts, and adjust the electron transfer path to improve the electron-hole separation efficiency, and thus improve the charge transfer efficiency. CdSSe has a high conduction band (-1.13 eV) and a narrow bandgap width (1.59 eV), exhibiting good light absorption characteristics and reduction ability; the valence band position of Bi2WO6 is much low (2.58 eV), indicating good oxidation activity. This heterojunction has excellent oxidation and reduction capabilities and exhibits multifunctional catalysts. Its photocatalytic degradation ability of tetracycline hydrochloride is 2.2 times that of the original CdSSe, while its photoelectrochemical activity is 11 times that of CdSSe, reaching a photocurrent density of - 2.081 mA/cm2 at 0 V (vs. RHE). The electrocatalytic activity of its hydrogen evolution has also been enhanced. This study developed a design strategy for a novel bifunctional S-scheme heterojunction catalyst.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Constructing oxygen defect-rich Bi2WO6/CeO2 S-scheme heterojunction for boosted photocatalytic antibiotic removal
    Chen, Jiaqi
    Yan, Zhaoxiong
    Ding, Yingjie
    Wang, Guosheng
    Xu, Zhihua
    CHEMICAL ENGINEERING SCIENCE, 2024, 287
  • [42] Novel Z-scheme MgFe2O4/Bi2WO6 heterojunction for efficient photocatalytic degradation of tetracycline hydrochloride: Mechanistic insight, degradation pathways and density functional theory calculations
    Zhang, Han
    Meng, Fanming
    Wei, Hainan
    Yu, Wenqing
    Yao, Sheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 652 : 1282 - 1296
  • [43] Boosting of the piezoelectric photocatalytic performance of Bi2MoO6 by Fe3+doping and construction S-scheme heterojunction using WO3
    Li, Jiamin
    Chen, Changheng
    Bai, Jiangwen
    Jin, Yuehui
    Guo, Chongfeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 : 574 - 584
  • [44] Performance and mechanism of Bi2WO6/AgI/ZnFe2O4 double Z-scheme heterojunction photocatalyst for tetracycline hydrochloride degradation under visible light
    Li, Xinglin
    Zhu, Pengfei
    Chen, Dandan
    Huang, Zhaoxin
    Lu, Han
    OPTICAL MATERIALS, 2025, 158
  • [45] Construction of fast charge-transferred 0D/2D BiOBr/Bi2WO6 S-scheme heterojunction with enhanced photocatalytic performance
    Pang, Ben
    Miao, Jiaming
    Wang, Haoran
    Wu, Cheng
    Wu, Linxiang
    Yuan, Guoliang
    Wang, Xiong
    APPLIED SURFACE SCIENCE, 2024, 649
  • [46] Electrostatic self-assembly of 2D/2D Bi2WO6/ZnIn2S4 heterojunction with enhanced photocatalytic degradation of tetracycline hydrochloride
    Zhang, Yi
    Tan, Pengfei
    Yang, Lu
    Zhou, Binhua
    Pan, Jun
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 314
  • [47] Construction of 2D/2D Bi2WO6/BN heterojunction for effective improvement on photocatalytic degradation of tetracycline
    Yan, Tongqi
    Du, Zhao
    Wang, Jingjing
    Cai, Huayi
    Bi, Dandan
    Guo, Zhonglu
    Liu, Zhenya
    Tang, Chengchun
    Fang, Yi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 894
  • [48] Novel 0D/2D Bi2WO6/MoSSe Z-scheme heterojunction for enhanced photocatalytic degradation and photoelectrochemical activity
    Xiong, Xiaoshan
    Zhang, Jun
    Chen, Chao
    Yang, Shuai
    Lin, Jiacen
    Xi, Junhua
    Kong, Zhe
    CERAMICS INTERNATIONAL, 2022, 48 (21) : 31970 - 31983
  • [49] Bi2WO6/AgInS2 S-scheme heterojunction: Efficient photodegradation of organic pollutant and toxicity evaluation
    Zhao, Yanyan
    Fan, Xu
    Zheng, Hongxing
    Liu, Enzhou
    Fan, Jun
    Wang, Xuejun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2024, 170 : 200 - 211
  • [50] Novel dual S-scheme BiOI/AgI/Bi2WO6 heterojunction with enhanced photocatalytic activity for highly efficient removal of organic pollutants
    Luo, Haidong
    Dong, Shuai
    Li, Hui
    Chen, Suhang
    Huang, Jie
    Xu, Kangzhen
    OPTICAL MATERIALS, 2023, 140