Convergence of the CUSUM estimation for a mean shift in linear processes with random coefficients

被引:0
|
作者
Wu, Yi [1 ]
Wang, Wei [1 ]
Wang, Xuejun [2 ]
机构
[1] Chizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R China
[2] Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear process; Random coefficients; Convergence; Cumulative sum estimator; Change point; CHANGE-POINT; RANDOM-VARIABLES;
D O I
10.1007/s00180-024-01465-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {Xi,1 <= i <= n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{X_{i},1\le i\le n\}$$\end{document} be a sequence of linear process based on dependent random variables with random coefficients, which has a mean shift at an unknown location. The cumulative sum (CUSUM, for short) estimator of the change point is studied. The strong convergence, Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{r}$$\end{document} convergence, complete convergence and the rate of strong convergence are established for the CUSUM estimator under some mild conditions. These results improve and extend the corresponding ones in the literature. Simulation studies and two real data examples are also provided to support the theoretical results.
引用
收藏
页码:3753 / 3778
页数:26
相关论文
共 50 条
  • [21] A note on the convergence of the mean shift
    Li, Xiangru
    Hu, Zhanyi
    Wu, Fuchao
    PATTERN RECOGNITION, 2007, 40 (06) : 1756 - 1762
  • [22] On Convergence of Epanechnikov Mean Shift
    Huang, Kejun
    Fu, Xiao
    Sidiropoulos, Nicholas D.
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3263 - 3270
  • [23] Convergence of a mean shift algorithm
    Li, Xiang-Ru
    Wu, Fu-Chao
    Hu, Zhan-Yi
    Ruan Jian Xue Bao/Journal of Software, 2005, 16 (03): : 365 - 374
  • [24] On convergence of the mean shift algorithm
    Shieh, Tzon-Liang
    Zhang, Jia-Rui
    Chiu, Shih-Yu
    Lan, Leu-Shing
    2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 614 - 618
  • [25] LINEAR-REGRESSION WITH RANDOM COEFFICIENTS - FINITE SAMPLE AND CONVERGENCE PROPERTIES
    RAJ, B
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (349) : 127 - 137
  • [27] Convergence in Higher Mean of a Random Schrödinger to a Linear Boltzmann Evolution
    Thomas Chen
    Communications in Mathematical Physics, 2006, 267 : 355 - 392
  • [28] Weak convergence for random weighting estimation of smoothed quantile processes
    Gao, Shesheng
    Zhong, Yongmin
    Gu, Chengfan
    Shirinzadeh, Bijan
    INFORMATION SCIENCES, 2014, 263 : 36 - 42
  • [29] Optimal Design of a CUSUM Chart for a Mean Shift of Unknown Size
    Hyu, Ong-Hyun
    Wan, Hong
    Kim, Sujin
    JOURNAL OF QUALITY TECHNOLOGY, 2010, 42 (03) : 311 - 326
  • [30] Identification and estimation in a linear correlated random coefficients model with censoring
    Zhang, Zhengyu
    Jin, Zequn
    ECONOMETRIC REVIEWS, 2020, 39 (02) : 196 - 213