Convergence of the CUSUM estimation for a mean shift in linear processes with random coefficients

被引:0
|
作者
Wu, Yi [1 ]
Wang, Wei [1 ]
Wang, Xuejun [2 ]
机构
[1] Chizhou Univ, Sch Big Data & Artificial Intelligence, Chizhou 247000, Peoples R China
[2] Anhui Univ, Sch Big Data & Stat, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear process; Random coefficients; Convergence; Cumulative sum estimator; Change point; CHANGE-POINT; RANDOM-VARIABLES;
D O I
10.1007/s00180-024-01465-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {Xi,1 <= i <= n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{X_{i},1\le i\le n\}$$\end{document} be a sequence of linear process based on dependent random variables with random coefficients, which has a mean shift at an unknown location. The cumulative sum (CUSUM, for short) estimator of the change point is studied. The strong convergence, Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_{r}$$\end{document} convergence, complete convergence and the rate of strong convergence are established for the CUSUM estimator under some mild conditions. These results improve and extend the corresponding ones in the literature. Simulation studies and two real data examples are also provided to support the theoretical results.
引用
收藏
页码:3753 / 3778
页数:26
相关论文
共 50 条