Symplectic and inverse spectral geometry of integrable systems: A glimpse and open problems

被引:2
|
作者
Pelayo, Aelvaro [1 ]
机构
[1] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Algebra Geometria & Topol, Madrid 28040, Spain
关键词
Integrable system; Symplectic manifold; Hamiltonian system; Spectral; Eigenvalue; Open problem; Momentum map; Toric system; Semitoric system; Delzant polytope; Moduli space; HAMILTONIAN TORUS ACTIONS; SEMITORIC SYSTEMS; MODULI SPACES; NORMAL FORMS; 1ST STEPS; INVARIANTS; QUANTUM; CLASSIFICATION; TOPOLOGY; SINGULARITIES;
D O I
10.1016/j.topol.2023.108577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first give a glimpse of finite dimensional classical integrable Hamiltonian systems from the point of view of symplectic geometry and briefly discuss their quantum counterparts, with an emphasis on recent progress on inverse spectral geometry. Then we propose several open problems about the geometry, topology and dynamics of these systems. The problems are largely motivated by the works of a number of authors, including Arnold, Atiyah, Colin de Verdiere, Delzant, Duistermaat, Eliasson, Fomenko, Guillemin, Kolmogorov, Kostant, Moser and Sternberg. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:35
相关论文
共 50 条