Hamiltonian integrable systems in a magnetic field and symplectic-Haantjes geometry

被引:0
|
作者
Kubu, Ondrej [1 ]
Reyes, Daniel [2 ,3 ]
Tempesta, Piergiulio [2 ,3 ]
Tondo, Giorgio [4 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, Prague, Czech Republic
[2] Inst Ciencias Matemat ICMAT, C Nicolas Cabrera 13-15, Madrid 28049, Spain
[3] Univ Complutense Madrid, Fac Ciencias Fis, Dept Fis Teor, Madrid 28040, Spain
[4] Univ Trieste, Dipartimento Matemat Informat & Geosci, Trieste, Italy
关键词
integrable systems; Haantjes geometry; magnetic systems; St & auml; ckel systems; SEPARATION; VARIABLES;
D O I
10.1098/rspa.2024.0076
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the geometry of classical Hamiltonian systems immersed in a magnetic field in three-dimensional (3D) Riemannian configuration spaces. We prove that these systems admit non-trivial symplectic-Haantjes manifolds, which are symplectic manifolds endowed with an algebra of Haantjes (1,1)-tensors. These geometric structures allow us to determine separation variables for known systems algorithmically. In addition, the underlying St & auml;ckel geometry is used to construct new families of integrable Hamiltonian models immersed in a magnetic field.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] CONSTRUCTION OF SYMPLECTIC-HAANTJES MANIFOLD OF CERTAIN HAMILTONIAN SYSTEMS
    Hosokawa, Kiyonori
    Takeuchi, Tsukasa
    Yoshioka, Akira
    PROCEEDINGS OF THE NINETEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2018, : 140 - 147
  • [2] Partial separability and symplectic-Haantjes manifolds
    Reyes, Daniel
    Tempesta, Piergiulio
    Tondo, Giorgio
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (06) : 2677 - 2710
  • [3] On integrable systems outside Nijenhuis and Haantjes geometry
    Tsiganov, A. V.
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 178
  • [4] INTEGRABLE SYSTEMS IN SYMPLECTIC GEOMETRY
    Asadi, E.
    Sanders, J. A.
    GLASGOW MATHEMATICAL JOURNAL, 2009, 51A : 5 - 23
  • [5] Classical multiseparable Hamiltonian systems, superintegrability and Haantjes geometry
    Reyes Nozaleda, Daniel
    Tempesta, Piergiulio
    Tondo, Giorgio
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 104
  • [6] SYMPLECTIC THEORY OF COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS
    Pelayo, Alvaro
    San Vu Ngoc
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 48 (03) : 409 - 455
  • [7] Integrable almost-symplectic Hamiltonian systems
    Fasso, Francesco
    Sansonetto, Nicola
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (09)
  • [8] Symplectic invariants for curves and integrable systems in similarity symplectic geometry
    Li YanYan
    Qu ChangZheng
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (07) : 1415 - 1432
  • [9] Symplectic invariants for curves and integrable systems in similarity symplectic geometry
    LI YanYan
    QU ChangZheng
    ScienceChina(Mathematics), 2015, 58 (07) : 1415 - 1432
  • [10] Symplectic invariants for curves and integrable systems in similarity symplectic geometry
    YanYan Li
    ChangZheng Qu
    Science China Mathematics, 2015, 58 : 1415 - 1432