Chebyshev Polynomials for Efficient Gaussian Process Computation

被引:0
|
作者
Dudek, Adrian [1 ]
Baranowski, Jerzy [1 ]
机构
[1] AGH Univ Sci & Technol, Dept Automat Control & Robot, Krakow, Poland
关键词
Gaussian Process; Chebyshev Polynomials; Chebyshev Series; computing efficiency;
D O I
10.1109/MMAR58394.2023.10242501
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Gaussian processes (GP) are becoming more and more popular way to solve statistics and machine learning problems. One of the reasons is the increase in computational power that can handle the inherent computational problem for GP models. Still, in the case of big data, the computational burden can be impractical. For this reason, various approximation methods are developed. In our work, we would like to present an alternative to the internal approximation by using the properties of Chebyshev polynomials. The idea is to calculate the GP model only at Chebyshev nodes and use the property of transforming function values in them to Chebyshev coefficients giving a solution to the original problem. In our research, we propose our version of the algorithm and test it on cases of various functions.
引用
收藏
页码:240 / 245
页数:6
相关论文
共 50 条
  • [31] Representing Sums of Finite Products of Chebyshev Polynomials of the First Kind and Lucas Polynomials by Chebyshev Polynomials
    Kim, Taekyun
    Kim, Dae San
    Dolgy, Dmitry V.
    Kwon, Jongkyum
    MATHEMATICS, 2019, 7 (01)
  • [32] Resultants of Chebyshev Polynomials
    Gishe, Jemal
    Ismail, Mourad E. H.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2008, 27 (04): : 499 - 508
  • [33] Chebyshev polynomials for operators
    Albrecht, Ernst
    ARCHIV DER MATHEMATIK, 2009, 92 (05) : 399 - 404
  • [34] Symmetrized Chebyshev polynomials
    Rivin, I
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (05) : 1299 - 1305
  • [35] DERIVATIVES OF CHEBYSHEV POLYNOMIALS
    DELANY, J
    HUEHN, K
    AMERICAN MATHEMATICAL MONTHLY, 1990, 97 (02): : 153 - 154
  • [36] On integer Chebyshev polynomials
    Habsieger, L
    Salvy, B
    MATHEMATICS OF COMPUTATION, 1997, 66 (218) : 763 - 770
  • [37] GENERALIZATION OF CHEBYSHEV POLYNOMIALS
    SHPARLINSKII, IE
    SIBERIAN MATHEMATICAL JOURNAL, 1990, 31 (01) : 183 - 185
  • [38] On modified Chebyshev polynomials
    Witula, Roman
    Slota, Damian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (01) : 321 - 343
  • [39] Chebyshev polynomials for operators
    Ernst Albrecht
    Archiv der Mathematik, 2009, 92 : 399 - 404
  • [40] An extension of the Chebyshev polynomials
    Kiepiela, K
    Klimek, D
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 178 (1-2) : 305 - 312