Highly Efficient and Robust Ternary All-Polymer Solar Cells Achieved by Electro-Active Polymer Compatibilizers

被引:8
|
作者
Kim, Geon-U [1 ]
Choi, Changeun [2 ,3 ]
Jeong, Dahyun [1 ]
Kim, Dong Jun [4 ]
Phan, Tan Ngoc-Lan [1 ]
Song, Seunghoon [2 ,3 ]
Park, Jinseok [1 ]
Kim, Taek-Soo [4 ]
Kim, Yun-Hi [5 ,6 ]
Kim, Bumjoon J. [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon 34141, South Korea
[2] Gyeongsang Natl Univ, Dept Mat Engn & Convergence Technol, Jinju 52828, South Korea
[3] Gyeongsang Natl Univ, ERI, Jinju 52828, South Korea
[4] Korea Adv Inst Sci & Technol KAIST, Dept Mech Engn, Daejeon 34141, South Korea
[5] Gyeongsang Natl Univ, Dept Chem, Jinju 52828, South Korea
[6] Gyeongsang Natl Univ, RIGET, Jinju 52828, South Korea
基金
新加坡国家研究基金会;
关键词
all-polymer solar cells; electro-active compatibilizer; intrinsically stretchable polymer solar cells; mechanical robustness; ternary all-polymer solar cells; COPOLYMER COMPATIBILIZERS; 17-PERCENT EFFICIENCY; MECHANICAL-PROPERTIES; BLEND MORPHOLOGY; PERFORMANCE; ACCEPTORS;
D O I
10.1002/aenm.202302125
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-polymer solar cells (all-PSCs), using polymerized non-fullerene acceptors (PNFAs), have shown promise in improving device stabilities compared to small-molecular acceptor-based PSCs. However, low mixing entropy between polymer donors (PDs) and PNFAs hampers the development of optimized blend morphology. Herein, this study develops efficient conjugated polymers that serve as interfacial compatibilizers between host PD and PNFA. Ternary all-polymer blends containing the compatibilizer demonstrate improved blend morphology with strengthened interfaces, resulting in better photovoltaic properties and thermal/mechanical stabilities. In detail, the power conversion efficiency (PCE) increases from 15.4 to 17.1% upon the addition of the compatibilizer. Moreover, the devices based on the ternary blend enable good thermal stability, retaining 90% of the initial PCE after 96 h at 125 & DEG;C. Additionally, the mechanical properties are improved; the cohesive fracture energy (Gc) of 2.6 J m-2 and crack onset strain (COS) of 20.4% of the ternary blend outperform those of the binary blend (Gc = 1.1 J m-2 and COS = 16.5%). Resultingly, the stretchable PSCs based on the ternary blend exhibit an excellent PCE of 13.7% and stretchability with a strain at PCE80% of 35%. Efficient and stable all-polymer solar cells are demonstrated by introducing electro-active polymeric compatibilizers into all-polymer blends. Complementary light absorption and cascade energy level alignment achieved by the compatibilizers improve photovoltaic performance. Moreover, the compatibilizers induce blend morphologies with sufficient intermixed domains and strengthen donor/acceptor interfaces, thereby enhancing thermal, photo, and mechanical stabilities.image
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Highly Efficient All-Polymer Solar Cells Enabled by Random Ternary Copolymer Acceptors with High Tolerance on Molar Ratios
    Wu, Yao
    Wu, Qiang
    Wang, Wei
    Sun, Rui
    Min, Jie
    SOLAR RRL, 2020, 4 (11)
  • [22] Electro-active polymer materials for solid polymer fuel cells
    Kim, KJ
    Shahinpoor, M
    Razani, A
    SMART STRUCTURES AND MATERIALS 1999: ELECTROACTIVE POLYMER ACTUATORS AND DEVICES, 1999, 3669 : 385 - 393
  • [23] Highly efficient and highly stable terpolymer-based all-polymer solar cells with broad complementary absorption and robust morphology
    Kim, Aesun
    Park, Chang Geun
    Park, Su Hong
    Kim, Hyung Jong
    Choi, Suna
    Kim, Young Un
    Jeong, Choel Hun
    Chae, Weon-Sik
    Cho, Min Ju
    Choi, Dong Hoon
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (21) : 10095 - 10103
  • [24] Intrinsically-Stretchable, Efficient Organic Solar Cells Achieved by High-Molecular-Weight, Electro-Active Polymer Acceptor Additives
    Lee, Jin-Woo
    Kim, Geon-U
    Kim, Dong Jun
    Jeon, Yeonjee
    Li, Sheng
    Kim, Taek-Soo
    Lee, Jung-Yong
    Kim, Bumjoon J.
    ADVANCED ENERGY MATERIALS, 2022, 12 (28)
  • [25] All-Polymer Solar Cells with Perylenediimide Polymer Acceptors
    Yi-kun Guo
    Yun-ke Li
    Han Han
    颜河
    赵达慧
    Chinese Journal of Polymer Science, 2017, 35 (02) : 293 - 301
  • [26] Polymer series enables all-polymer solar cells
    McCormick, Colin
    MRS BULLETIN, 2014, 39 (06) : 478 - 479
  • [27] All-polymer solar cells with perylenediimide polymer acceptors
    Yi-kun Guo
    Yun-ke Li
    Han Han
    He Yan
    Dahui Zhao
    Chinese Journal of Polymer Science, 2017, 35 : 293 - 301
  • [28] 18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor
    Sun, Rui
    Wang, Tao
    Fan, Qunping
    Wu, Mingjian
    Yang, Xinrong
    Wu, Xiaohei
    Yu, Yue
    Xia, Xinxin
    Cui, Fengzhe
    Wan, Ji
    Lu, Xinhui
    Hao, Xiaotao
    Jen, Alex K. -Y.
    Spiecker, Erdmann
    Min, Jie
    JOULE, 2023, 7 (01) : 221 - 237
  • [29] Highly Efficient and Stable All-Polymer Solar Cells Enabled by Near-Infrared Isomerized Polymer Acceptors
    Wang, Tao
    Sun, Rui
    Wang, Wei
    Li, Hongneng
    Wu, Yao
    Min, Jie
    CHEMISTRY OF MATERIALS, 2021, 33 (02) : 761 - 773
  • [30] Efficient All-Polymer Solar Cells Enabled by Interface Engineering
    Zhang, Guoping
    Wang, Lihong
    Zhao, Chaoyue
    Wang, Yajie
    Hu, Ruiyu
    Che, Jiaxu
    He, Siying
    Chen, Wei
    Cao, Leifeng
    Luo, Zhenghui
    Qiu, Mingxia
    Li, Shunpu
    Zhang, Guangye
    POLYMERS, 2022, 14 (18)