Osteogenic differentiation of adipose-derived canine mesenchymal stem cells seeded in porous calcium-phosphate scaffolds

被引:2
|
作者
Herrera, David [1 ]
Lodoso-Torrecilla, Irene [2 ]
Ginebra, Maria-Pau [2 ]
Rappe, Katrin [1 ]
Franch, Jordi [1 ]
机构
[1] Autonomous Univ Barcelona, Vet Fac, Dept Anim Med & Surg, Bone Regenerat Res Grp, Cerdanyola Del Valles, Spain
[2] Univ Politecn Cataluna, Dept Mat Sci & Engn, Biomat Biomech & Tissue Engn Grp, Barcelona, Spain
关键词
canine mesenchymal stem cell; bone graft substitute; beta-tricalcium phosphate; CD90; ceramic scaffold; osteogenic differentiation; BONE-MARROW; CHRONIC OSTEOARTHRITIS; TISSUE; DOGS; CRYOPRESERVATION; BLOOD; SIZE;
D O I
10.3389/fvets.2023.1149413
中图分类号
S85 [动物医学(兽医学)];
学科分类号
0906 ;
摘要
Introduction: Engineered bone graft substitutes are a promising alternative and supplement to autologous bone grafts as treatments for bone healing impairment. Advances in human medicine extend an invitation to pursue these biomimetic strategies in animal patients, substantiated by the theory that specialized scaffolds, multipotent cells, and biological cues may be combined into a bioactive implant intended for the enhancement of tissue regeneration. Methods: This proof-of-concept study was designed to evaluate and validate the feasibility of beta-tricalcium phosphate foam scaffolds seeded with canine mesenchymal stem cells derived from adipose tissue. Cell-inoculated samples and sham controls were cultured statically for 72 hours in complete growth medium to evaluate seeding capacity, while a subset of loaded scaffolds was further induced with osteogenic culture medium for 21 days. Produced implants were characterized and validated with a combination of immunofluorescence and reflection confocal microscopy, scanning electron microscopy, and polymerase chain reaction to confirm osteogenic differentiation in tridimensional-induced samples. Results: After 72 hours of culture, all inoculated scaffolds presented widespread yet heterogeneous surface seeding, distinctively congregating stem cells around pore openings. Furthermore, at 21 days of osteogenic culture conditions, robust osteoblastic differentiation of the seeded cells was confirmed by the change of cell morphology and evident deposition of extra-cellular matrix, accompanied by mineralization and scaffold remodeling; furthermore, all induced cell-loaded implants lost specific stemness immunophenotype expression and simultaneously upregulated genomic expression of osteogenic genes Osterix and Ostecalcin. Conclusions: ss-TCP bio-ceramic foam scaffolds proved to be suitable carriers and hosts of canine adipose-derived MSCs, promoting not only surface attachment and proliferation, but also demonstrating strong in-vitro osteogenic potential. Although this research provides satisfactory in-vitro validation for the conceptualization and feasibility of a canine bio-active bone implant, further testing such as patient safety, large-scale reproducibility, and quality assessment are needed for regulatory compliance in future commercial clinical applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Effect of exogenous genistein on osteogenic differentiation of adipose-derived mesenchymal stem cells in laying hens
    Ahmadian, Farhang
    Irani, Mehrdad
    Mohammadi-Sangcheshmeh, Abdollah
    TISSUE & CELL, 2024, 87
  • [22] Isolation and characterization of canine adipose-derived mesenchymal stem cells
    Neupane, Manish
    Chang, Chia-Cheng
    Kiupel, Matti
    Yuzbasiyan-Gurkan, Vilma
    TISSUE ENGINEERING PART A, 2008, 14 (06) : 1007 - 1015
  • [23] Isolation and characterization of canine adipose-derived mesenchymal stem cells
    Patricio, L. F. L.
    Rebelatto, C. L. K.
    Brofman, P. R. S.
    Maciel, B. B.
    Beltrame, O. C.
    Brito, H. F. V.
    Locatelli-Dittrich, R.
    ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2013, 65 (04) : 946 - 954
  • [24] A Comparison of Neurosphere Differentiation Potential of Canine Bone Marrow-Derived Mesenchymal Stem Cells and Adipose-Derived Mesenchymal Stem Cells
    Chung, Cheng-Shu
    Fujita, Naoki
    Kawahara, Naoya
    Yui, Sho
    Nam, Eunryel
    Nishimura, Ryohei
    JOURNAL OF VETERINARY MEDICAL SCIENCE, 2013, 75 (07): : 879 - 886
  • [25] Adipose-derived mesenchymal stem cell seeded Atelocollagen scaffolds for cardiac tissue engineering
    Qiong Li
    Miaomiao Li
    Meng Li
    Zhengyan Zhang
    Han Ma
    Liang Zhao
    Min Zhang
    Guodong Wang
    Journal of Materials Science: Materials in Medicine, 2020, 31
  • [26] Adipose-derived mesenchymal stem cell seeded Atelocollagen scaffolds for cardiac tissue engineering
    Li, Qiong
    Li, Miaomiao
    Li, Meng
    Zhang, Zhengyan
    Ma, Han
    Zhao, Liang
    Zhang, Min
    Wang, Guodong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2020, 31 (10)
  • [27] Osteogenic differentiation of mesenchymal stem cells on calcium phosphate surfaces
    Müller, P
    Lüthen, F
    Nebe, B
    Klinkenberg, KD
    Neumann, HG
    Liebold, A
    Stamm, C
    Rychly, J
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2005, 84 : 78 - 78
  • [28] Human amnion-derived mesenchymal stem cells promote osteogenic and angiogenic differentiation of human adipose-derived stem cells
    Zhang, Chunli
    Yu, Lidong
    Liu, Songjian
    Wang, Yuli
    PLOS ONE, 2017, 12 (10):
  • [29] The assessment of natural scaffolds ability in chondrogenic differentiation of human adipose-derived mesenchymal stem cells
    Sheykhhasan, Mohsen
    Ghiasi, Mahdieh
    Pak, Hossien Bakhtiyari
    Internet Journal of Medical Update, 2016, 11 (02) : 11 - 16
  • [30] Effect of Gelatin on Osteogenic Cell Sheet Formation Using Canine Adipose-Derived Mesenchymal Stem Cells
    Kim, Ah Young
    Kim, Yongsun
    Lee, Seung Hoon
    Yoon, Yongseok
    Kim, Wan-Hee
    Kweon, Oh-Kyeong
    CELL TRANSPLANTATION, 2017, 26 (01) : 115 - 123