Feature Selection in High Dimensional Data: A Review

被引:1
|
作者
Silaich, Sarita [1 ]
Gupta, Suneet [2 ]
机构
[1] Govt Polytech Coll Jhunjhunu, Dept Comp Sci & Engn, Jhunjhunu, India
[2] Mody Univ Laxmangarh, CSE Dept, Sikar, India
来源
THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1 | 2023年 / 608卷
关键词
Feature selection; Filter; Wrapper; Embedded; High dimensional data; Machine learning;
D O I
10.1007/978-981-19-9225-4_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
By choosing an ideal subset of the total features, feature selection in machine learning is essential to reducing the quantity of the data and increasing classifier performance. Nowadays, the size of data is increasing exponentially in fields like text classification, microarray data, bioinformatics, gene expression, information retrieval, etc. In high dimensional or big data, the learning model's predictions are not accurate because of noisy or irrelevant features, so there is a challenge to reduce the data dimensionality. This paper introduces the concepts of feature relevance, relevant feature selection, and evaluation criteria. An overview and comparison of existing feature selection methods for various application domains are also done.
引用
收藏
页码:703 / 717
页数:15
相关论文
共 50 条
  • [21] Overview Of Feature Subset Selection Algorithm For High Dimensional Data
    Gandhi, Swati S.
    Prabhune, S. S.
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON INVENTIVE SYSTEMS AND CONTROL (ICISC 2017), 2017, : 618 - 623
  • [22] Efficient feature selection filters for high-dimensional data
    Ferreira, Artur J.
    Figueiredo, Mario A. T.
    PATTERN RECOGNITION LETTERS, 2012, 33 (13) : 1794 - 1804
  • [23] On the scalability of feature selection methods on high-dimensional data
    Bolon-Canedo, V.
    Rego-Fernandez, D.
    Peteiro-Barral, D.
    Alonso-Betanzos, A.
    Guijarro-Berdinas, B.
    Sanchez-Marono, N.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 56 (02) : 395 - 442
  • [24] Unsupervised spectral feature selection algorithms for high dimensional data
    WANG Mingzhao
    HAN Henry
    HUANG Zhao
    XIE Juanying
    Frontiers of Computer Science, 2023, 17 (05)
  • [25] Evaluating Feature Selection Robustness on High-Dimensional Data
    Pes, Barbara
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2018), 2018, 10870 : 235 - 247
  • [26] Feature selection for classifying high-dimensional numerical data
    Wu, YM
    Zhang, AD
    PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 251 - 258
  • [27] Simultaneous Feature Selection and Classification for High-Dimensional Data
    Pai, Vriddhi
    Gupta, Subhash Chand
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON GREEN COMPUTING AND INTERNET OF THINGS (ICGCIOT 2018), 2018, : 153 - 158
  • [28] Unsupervised spectral feature selection algorithms for high dimensional data
    Wang, Mingzhao
    Han, Henry
    Huang, Zhao
    Xie, Juanying
    FRONTIERS OF COMPUTER SCIENCE, 2023, 17 (05)
  • [29] High-Dimensional Software Engineering Data and Feature Selection
    Wang, Huanjing
    Khoshgoftaar, Taghi M.
    Gao, Kehan
    Seliya, Naeem
    ICTAI: 2009 21ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, 2009, : 83 - +
  • [30] Clustering high-dimensional data via feature selection
    Liu, Tianqi
    Lu, Yu
    Zhu, Biqing
    Zhao, Hongyu
    BIOMETRICS, 2023, 79 (02) : 940 - 950