The effect of configurational entropy on acoustic emission of P2-type layered oxide cathodes for sodium-ion batteries

被引:10
|
作者
Dreyer, Soeren L. [1 ]
Zhang, Ruizhuo [1 ]
Wang, Junbo [1 ]
Kondrakov, Aleksandr [2 ]
Wang, Qingsong [1 ,3 ]
Brezesinski, Torsten [1 ]
Janek, Juergen [1 ,4 ,5 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Nanotechnol, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] BASF SE, Carl Bosch Str 38, D-67056 Ludwigshafen, Germany
[3] Univ Bayreuth, Bavarian Ctr Battery Technol BayBatt, Dept Chem, Univ str 30, D-95447 Bayreuth, Germany
[4] Justus Liebig Univ Giessen, Inst Phys Chem, Heinrich Buff Ring 17, D-35392 Giessen, Germany
[5] Justus Liebig Univ Giessen, Ctr Mat Res ZfM LaMa, Heinrich Buff Ring 17, D-35392 Giessen, Germany
来源
JOURNAL OF PHYSICS-ENERGY | 2023年 / 5卷 / 03期
关键词
acoustic emission; P2-type layered cathode; high-entropy oxide; sodium-ion battery; chemo-mechanical degradation; SI-BASED ELECTRODES; IN-SITU; NA-ION; LI; DEGRADATION; STABILITY; CRACKING; PHASE; INTERPHASE; DEPOSITION;
D O I
10.1088/2515-7655/acd41a
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sodium-ion batteries (SIBs) see intensive research and commercialization efforts, aiming to establish them as an alternative to lithium-ion batteries. Among the reported cathode material families for SIBs, Na-deficient P2-type layered oxides are promising candidates, benefiting from fast sodium diffusion and therefore high charge/discharge rates. However, upon sodium extraction at high potentials, a transition from the P2 to O2 phase occurs, with the corresponding change in cell volume resulting in particle fracture and capacity degradation. A possible solution to this is to increase configurational entropy by introducing more elements into the transition-metal layer (so-called high-entropy concept), leading to some kind of structural stabilization. In this work, the acoustic emission (AE) of a series of P2-type layered oxide cathodes with increasing configurational entropy [Na-0.67(Mn0.55Ni0.21Co0.24)O-2, Na-0.67(Mn0.45Ni0.18Co0.24Ti0.1Mg0.03)O-2 and Na-0.67(Mn0.45Ni0.18Co0.18Ti0.1Mg0.03Al0.04Fe0.02)O-2] is recorded during SIB operation and correlated to the materials properties, namely change in c lattice parameter and cracking behavior. A structure-property relationship between entropy, manifested in the extent of phase transition, and detected AE is derived, supported by the classification of signals by peak frequency. This classification in combination with microscopy imaging allows to distinguish between inter- and intragranular fracture. Relatively more intergranular and less intragranular crack formation is observed with increasing configurational entropy.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Insights into the Enhanced Cycle and Rate Performances of the F-Substituted P2-Type Oxide Cathodes for Sodium-Ion Batteries
    Liu, Kai
    Tan, Susheng
    Moon, Jisue
    Jafta, Charl J.
    Li, Cheng
    Kobayashi, Takeshi
    Lyu, Hailong
    Bridges, Craig A.
    Men, Shuang
    Guo, Wei
    Sun, Yifan
    Zhang, Jinli
    Paranthaman, M. Parans
    Sun, Xiao-Guang
    Dai, Sheng
    ADVANCED ENERGY MATERIALS, 2020, 10 (19)
  • [32] High-Entropy and Superstructure-Stabilized Layered Oxide Cathodes for Sodium-Ion Batteries
    Yao, Libing
    Zou, Peichao
    Wang, Chunyang
    Jiang, Jiahao
    Ma, Lu
    Tan, Sha
    Beyer, Kevin A.
    Xu, Feng
    Hu, Enyuan
    Xin, Huolin L.
    ADVANCED ENERGY MATERIALS, 2022, 12 (41)
  • [33] Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes
    Zhao, Chenglong
    Yao, Zhenpeng
    Wang, Qidi
    Li, Haifeng
    Wang, Jianlin
    Liu, Ming
    Ganapathy, Swapna
    Lu, Yaxiang
    Cabana, Jordi
    Li, Baohua
    Bai, Xuedong
    Aspuru-Guzik, Alan
    Wagemaker, Marnix
    Chen, Liquan
    Hu, Yong-Sheng
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (12) : 5742 - 5750
  • [34] Sodium compensation and interface protection effects of Na3PS3O for sodium-ion batteries with P2-type oxide cathodes
    Liao, Jihui
    Zhang, Fengping
    Lu, Yao
    Ren, Jian
    Wu, Wenwei
    Xu, Zhen
    Wu, Xuehang
    CHEMICAL ENGINEERING JOURNAL, 2022, 437
  • [35] Improvement of cycle life for layered oxide cathodes in sodium-ion batteries
    Yang, Huan
    Wang, Dong
    Liu, Yalan
    Liu, Yihua
    Zhong, Benhe
    Song, Yang
    Kong, Qingquan
    Wu, Zhenguo
    Guo, Xiaodong
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (05) : 1756 - 1780
  • [36] Advances in layered transition metal oxide cathodes for sodium-ion batteries
    Gao, Hanqing
    Zeng, Jinjue
    Sun, Zhipeng
    Jiang, Xiangfen
    Wang, Xuebin
    MATERIALS TODAY ENERGY, 2024, 42
  • [37] Environmentally stable interface of layered oxide cathodes for sodium-ion batteries
    Shaohua Guo
    Qi Li
    Pan Liu
    Mingwei Chen
    Haoshen Zhou
    Nature Communications, 8
  • [38] Environmentally stable interface of layered oxide cathodes for sodium-ion batteries
    Guo, Shaohua
    Li, Qi
    Liu, Pan
    Chen, Mingwei
    Zhou, Haoshen
    NATURE COMMUNICATIONS, 2017, 8
  • [39] The effect of nonflammable electrolyte on Cu-substituted P2-type layered cathode for high safety sodium-ion batteries
    Sung, Jae Yoon
    Shaji, Nitheesha
    Kim, Taehyung
    Jiang, Feng
    Nanthagopal, Murugan
    Jung, Soon Phil
    Lee, Chang Woo
    JOURNAL OF POWER SOURCES, 2023, 580
  • [40] Electrochemical mechanism of high Na-content P2-type layered oxides for sodium-ion batteries
    Ying Yang
    Wei-Feng Wei
    Rare Metals, 2020, 39 : 332 - 334