Preparation of stable colloidal dispersion of surface modified Fe3O4 nanoparticles for magnetic heating applications

被引:12
|
作者
Dizajyekan, Behnam Sabzi [1 ]
Jafari, Arezou [1 ]
Vafaie-Sefti, Mohsen [1 ]
Saber, Reza [2 ]
Fakhroueian, Zahra [3 ]
机构
[1] Tarbiat Modares Univ, Chem Engn Fac, Tehran, Iran
[2] Univ Tehran Med Sci, Adv Med Technol & Equipment Inst, Tehran, Iran
[3] Univ Tehran, Coll Engn, Sch Chem Engn, IPE, POB 11155-4563, Tehran, Iran
基金
美国国家科学基金会;
关键词
IRON-OXIDE NANOPARTICLES; ABSORPTION RATE; HYPERTHERMIA THERAPY; FLUID; NANOCOMPOSITES; POWER; EXTRACTION; NANOFLUIDS; PARTICLES; REMOVAL;
D O I
10.1038/s41598-024-51801-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The effect of surface modification on enhancing the magnetic heating behavior of magnetic nano fluids were investigated, for this purpose Fe3O4 nanoparticles were synthesized using co-precipitation method and surface modification was done using citric acid, ascorbic acid, tetraethyl orthosilicate (TEOS), polyvinyl alcohol (PVA) and polyethylene glycol (PEG). Experimental heating tests using AC magnetic field were done in the frequency of 100 kHz and different magnetic field (H) intensities. Theoretically the specific absorption rate (SAR) in magnetic nano fluids is independent of nanoparticles concentration but the experimental results showed different behavior. The theoretical SAR value @ H = 12kA.m(-1) for Nano fluids containing bare Fe3O4 nanoparticles was 11.5 W/g but in experimental tests the obtained value was 9.72 W/g for nano fluid containing 20,000 ppm of dispersed nanoparticles. The experimental SAR calculation was repeated for sample containing 10,000 ppm of nanoparticles and the results showed increase in experimental SAR that is an evidence of nanoparticles agglomeration in higher concentrations. The surface modification has improved the dispersion ability of the nanoparticles. The Ratio of SAR(, experimental, 20000ppm) to SAR(, experimental, 10000ppm) was 0.85 for bare Fe3O4 nanoparticles dispersion but in case of surface modified nanoparticles this ratio has increased up to 0.98 that shows lower agglomeration of nanoparticles as a result of surface modification, although on the other hand the surface modification agents were magnetically passive and so it is expected that in constant concentration the SAR for bare Fe3O4 nanoparticles to be higher than this variable for surface modified nanoparticles. At lower concentrations the dispersions containing bare Fe3O4 nanoparticles showed higher SAR values but at higher concentrations the surface modified Fe3O4 nanoparticles showed better results although the active agent amount was lower at them. Finally, it should be noted that the nanoparticles that were surface modified using polymeric agents showed the highest decrease in experimental SAR amounts comparing theoretical results that was because of the large molecules of polymers comparing other implemented surface modification agents.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles
    Liu, C. H.
    Zhou, Z. D.
    Yu, X.
    Lv, B. Q.
    Mao, J. F.
    Xiao, D.
    INORGANIC MATERIALS, 2008, 44 (03) : 291 - 295
  • [32] Preparation and characterization of Fe3O4/Ag composite magnetic nanoparticles
    C. H. Liu
    Z. D. Zhou
    X. Yu
    B. Q. Lv
    J. F. Mao
    D. Xiao
    Inorganic Materials, 2008, 44 : 291 - 295
  • [33] Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification
    Shen, Y. F.
    Tang, J.
    Nie, Z. H.
    Wang, Y. D.
    Ren, Y.
    Zuo, L.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 68 (03) : 312 - 319
  • [34] Convenient Preparation and Characterization of Surface Carboxyl-functioned Fe3O4 Magnetic Nanoparticles
    Su Peng-Fei
    Chen Guo
    Zhao Jun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2011, 32 (07): : 1472 - 1477
  • [35] Surface modified Fe3O4 nanoparticles as a protein delivery vehicle
    Xu, Lixing
    Kim, Min-Jung
    Kim, Ki-Do
    Choa, Young-Ho
    Kim, Hee-Taik
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 350 (1-3) : 8 - 12
  • [36] Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications
    Nguyen, Minh Dang
    Tran, Hung-Vu
    Xu, Shoujun
    Lee, T. Randall
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [37] Tailoring biocompatible Fe3O4 nanoparticles for applications to magnetic hyperthermia
    Insausti, Maite
    Salado, Javier
    Castellanos, Idoia
    Lezama, Luis
    Gil de Muro, Izaskun
    de la Fuente, Jesus M.
    Garayo, Eneko
    Plazaola, Fernando
    Rojoa, Teofilo
    COLLOIDAL NANOCRYSTALS FOR BIOMEDICAL APPLICATIONS VII, 2012, 8232
  • [38] Preparation of magnetic particles by dispersion polymerization in the presence of Fe3O4 fluid
    Ding, XB
    Sun, ZH
    Wan, GX
    INTERNATIONAL CONFERENCE ON BIORELATED POLYMERS CONTROLLED RELEASE DRUGS AND REACTIVE POLYMERS, 1997, : 43 - 44
  • [39] Applications of Superparamagnetic Fe3O4 Nanoparticles in Magnetic Resonance Imaging
    Liu Tianhui
    Chang Gang
    Cao Ruijun
    Meng Lingjie
    PROGRESS IN CHEMISTRY, 2015, 27 (05) : 601 - 613
  • [40] Large-Scale Synthesis of Colloidal Fe3O4 Nanoparticles Exhibiting High Heating Efficiency in Magnetic Hyperthermia
    Kolen'ko, Yury V.
    Banobre-Lopez, Manuel
    Rodriguez-Abreu, Carlos
    Carbo-Argibay, Enrique
    Sailsman, Alexandra
    Pineiro-Redondo, Yolanda
    Fatima Cerqueira, M.
    Petrovykh, Dmitri Y.
    Kovnir, Kirill
    Lebedev, Oleg I.
    Rivas, Jose
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (16): : 8691 - 8701