New vector solutions for the cubic nonlinear schrödinger system

被引:0
|
作者
Duan, Lipeng [1 ]
Luo, Xiao [2 ]
Zhen, Maoding [2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2024年 / 153卷 / 01期
关键词
SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; BOUND-STATES; PHASE-SEPARATION; ELLIPTIC SYSTEM; GROUND-STATES; UNIQUENESS; SPIKES; WAVES;
D O I
10.1007/s11854-023-0315-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a family of new solutions for the following nonlinear Schr & ouml;dinger system:{ Delta-u + P(y)u = mu u3 +beta uv2, u > 0, in R-3,-Delta v+ Q(y)v= nu v3 + beta u2v, v> 0, in R3,where P(y), Q(y) are positive radial potentials, mu > 0, nu > 0 and beta is an element of R. Motivated by the doubling construction of the entire finite energy sign-changing solution for the Yamabe equation in M. Medina and M. Musso (J. Math. Pures Appl. 2021), by using another type of building blocks, which are not equal to the ones adopted in S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), we successfully construct new segregated and synchronized vector solutions for the nonlinear Schr & ouml;dinger system with more complex concentration structure. Our results extend the main results of S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), and in particular, for the segregated case, we well complement the previous works when the potentials P(y) and Q(y) decay in different rates.
引用
收藏
页码:247 / 291
页数:45
相关论文
共 50 条
  • [21] Stable and finite Morse index solutions of a nonlinear Schrödinger system
    Phuong Le
    Nonlinear Differential Equations and Applications NoDEA, 2021, 28
  • [22] On Solutions to the Matrix Nonlinear Schrödinger Equation
    A. V. Domrin
    Computational Mathematics and Mathematical Physics, 2022, 62 : 920 - 932
  • [23] Prescribed solutions of a nonlinear fractional Schrödinger system with quadratic interaction
    Esfahani, Amin
    ANALYSIS AND APPLICATIONS, 2024, 22 (01) : 89 - 110
  • [24] Normalized solutions of nonlinear Schrödinger equations
    Thomas Bartsch
    Sébastien de Valeriola
    Archiv der Mathematik, 2013, 100 : 75 - 83
  • [25] Existence of normalized peak solutions for a coupled nonlinear Schrödinger system
    Yang, Jing
    ADVANCES IN NONLINEAR ANALYSIS, 2024, 13 (01)
  • [26] Existence of Dark Soliton Solutions of the Cubic Nonlinear Schrödinger Equation with Periodic Inhomogeneous Nonlinearity
    Juan Belmonte-Beitia
    Pedro J Torres
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 65 - 72
  • [27] On a Hierarchy of Vector Derivative Nonlinear Schrödinger Equations
    Smirnov, Aleksandr O.
    Frolov, Eugene A.
    Dmitrieva, Lada L.
    SYMMETRY-BASEL, 2024, 16 (01):
  • [28] Characteristics of coexisting rogue wave and breather in vector nonlinear Schr?dinger system
    Jia, Hui-Xian
    Zuo, Da-Wei
    Tian, Xiu-Shu
    Guo, Zhi-Fang
    APPLIED MATHEMATICS LETTERS, 2023, 136
  • [29] Vector Solutions with Prescribed Component-Wise Nodes for a Schr?dinger System
    Zhaoli Liu
    Zhi-Qiang Wang
    AnalysisinTheoryandApplications, 2019, 35 (03) : 288 - 311
  • [30] Solutions to a cubic Schrödinger system with mixed attractive and repulsive forces in a critical regime
    Dovetta S.
    Pistoia A.
    Pistoia, Angela (angela.pistoia@uniroma1.it), 1600, American Institute of Mathematical Sciences (04):