New vector solutions for the cubic nonlinear schrödinger system

被引:0
|
作者
Duan, Lipeng [1 ]
Luo, Xiao [2 ]
Zhen, Maoding [2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2024年 / 153卷 / 01期
关键词
SCHRODINGER-EQUATIONS; POSITIVE SOLUTIONS; BOUND-STATES; PHASE-SEPARATION; ELLIPTIC SYSTEM; GROUND-STATES; UNIQUENESS; SPIKES; WAVES;
D O I
10.1007/s11854-023-0315-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we construct a family of new solutions for the following nonlinear Schr & ouml;dinger system:{ Delta-u + P(y)u = mu u3 +beta uv2, u > 0, in R-3,-Delta v+ Q(y)v= nu v3 + beta u2v, v> 0, in R3,where P(y), Q(y) are positive radial potentials, mu > 0, nu > 0 and beta is an element of R. Motivated by the doubling construction of the entire finite energy sign-changing solution for the Yamabe equation in M. Medina and M. Musso (J. Math. Pures Appl. 2021), by using another type of building blocks, which are not equal to the ones adopted in S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), we successfully construct new segregated and synchronized vector solutions for the nonlinear Schr & ouml;dinger system with more complex concentration structure. Our results extend the main results of S. Peng and Z.-Q. Wang (Arch. Ration. Mech. Anal. 2013), and in particular, for the segregated case, we well complement the previous works when the potentials P(y) and Q(y) decay in different rates.
引用
收藏
页码:247 / 291
页数:45
相关论文
共 50 条
  • [1] Segregated and Synchronized Vector Solutions for Nonlinear Schrödinger Systems
    Shuangjie Peng
    Zhi-qiang Wang
    Archive for Rational Mechanics and Analysis, 2013, 208 : 305 - 339
  • [2] Bifurcation analysis and new exact complex solutions for the nonlinear Schrödinger equations with cubic nonlinearity
    Alam, Md Nur
    Ilhan, Onur Alp
    Akash, Hemel Sharker
    Talib, Imran
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (03)
  • [3] SEGREGATED VECTOR SOLUTIONS FOR NONLINEAR SCHR?DINGER SYSTEMS IN R~2
    王春花
    谢定一
    占丽萍
    张李攀
    赵良珮
    Acta Mathematica Scientia, 2015, (02) : 383 - 398
  • [4] Stability and soliton solutions for a parity-time-symmetric vector nonlinear Schrödinger system
    Lijia Han
    Le Xin
    Indian Journal of Physics, 2018, 92 : 1291 - 1298
  • [5] On the existence of solutions for nonlinear Schrödinger-Poisson system
    Correa, Genivaldo dos Passos
    dos Santos, Gelson C. G.
    Silva, Julio Roberto S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [6] Infinitely Many Solutions for the Nonlinear Schrödinger–Poisson System
    Ke Jin
    Lushun Wang
    Journal of Dynamical and Control Systems, 2023, 29 : 1299 - 1322
  • [7] New stochastic solutions for a new extension of nonlinear Schrödinger equation
    Alharbi, Yousef F
    Sohaly, M.A.
    Abdelrahman, Mahmoud A E
    Pramana - Journal of Physics, 2021, 95 (04):
  • [8] New spherically symmetric solutions of nonlinear schrödinger equations
    Cherniha R.M.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (1-2) : 107 - 113
  • [9] New stochastic solutions for a new extension of nonlinear Schrödinger equation
    Yousef F Alharbi
    M A Sohaly
    Mahmoud A E Abdelrahman
    Pramana, 2021, 95
  • [10] On discretizations of the vector nonlinear Schrödinger equation
    Department of Applied Mathematics, University of Colorado-Boulder, Boulder, CO 80309, United States
    不详
    Phys Lett Sect A Gen At Solid State Phys, 5-6 (287-304):