Optimization of spatial-temporal graph: A taxi demand forecasting model based on spatial-temporal tree

被引:1
|
作者
Li, Jianbo [1 ]
Lv, Zhiqiang [1 ,2 ]
Ma, Zhaobin [1 ]
Wang, Xiaotong [1 ]
Xu, Zhihao [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266701, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent transportation system; Taxi demand; Graph structure; Tree structure; Multiple factors; PREDICTION;
D O I
10.1016/j.inffus.2023.102178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Taxi is one of the important means of transportation for people's daily travel activities, and it is one of the important research objects of intelligent transportation system. Taxi demand forecasting research can promote the application of urban transportation basic services and the transportation department to analyze and allocate transportation resources more reasonably. Graph structure is an important method for capturing spatial correlations among urban regions. However, it has certain limitations in capturing the hierarchical features and the local path features of regional nodes. Additionally, existing research has failed to capture multiple factors influencing changes in taxi demand. Therefore, this study proposes a spatial-temporal model based on capturing multi-factor features. The model innovatively uses the tree structure as a topology structure and proposes the tree convolution for constructing data spatial distribution features. The spatial-temporal convolution module with tree convolution as the core can effectively capture the hierarchical features and the local path features among area nodes. In this study, four factors affecting taxi demand are designed. The deep features of the four factors are further fused through the spatial-temporal convolution module. The model integrates multiple influencing factors affecting taxi demand from the spatial-temporal level and shows certain advantages in experiments. Compared with existing baselines, the model designed in this paper shows certain advantages in three real urban taxi datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Attention-based spatial-temporal graph transformer for traffic flow forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Li, Changwu
    Yin, Conghui
    Su, Yixin
    Xiao, Peng
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (29): : 21827 - 21839
  • [42] Dynamic traveling time forecasting based on spatial-temporal graph convolutional networks
    Fangshu Chen
    Yufei Zhang
    Lu Chen
    Xiankai Meng
    Yanqiang Qi
    Jiahui Wang
    [J]. Frontiers of Computer Science, 2023, 17
  • [43] Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting
    Guo, Shengnan
    Lin, Youfang
    Feng, Ning
    Song, Chao
    Wan, Huaiyu
    [J]. THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 922 - 929
  • [44] TAXI ORIGIN-DESTINATION DEMAND PREDICTION WITH CONTEXTUALIZED SPATIAL-TEMPORAL NETWORK
    Qiu, Zhilin
    Liu, Lingbo
    Li, Guanbin
    Wang, Qing
    Xiao, Nong
    Lin, Liang
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 760 - 765
  • [45] Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction
    Liu, Lingbo
    Qiu, Zhilin
    Li, Guanbin
    Wang, Qing
    Ouyang, Wanli
    Lin, Liang
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (10) : 3875 - 3887
  • [46] Deep Multi-View Spatial-Temporal Network for Taxi Demand Prediction
    Yao, Huaxiu
    Wu, Fei
    Ke, Jintao
    Tang, Xianfeng
    Jia, Yitian
    Lu, Siyu
    Gong, Pinghua
    Ye, Jieping
    Li, Zhenhui
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 2588 - 2595
  • [47] A Spatial-Temporal Aggregated Graph Neural Network for Docked Bike-sharing Demand Forecasting
    Feng, Jiahui
    Liu, Hefu
    Zhou, Jingmei
    Zhou, Yang
    [J]. ACM Transactions on Knowledge Discovery from Data, 2024, 18 (09)
  • [48] Capturing Local and Global Spatial-Temporal Correlations of Spatial-Temporal Graph Data for Traffic Flow Prediction
    Cao, Shuqin
    Wu, Libing
    Zhang, Rui
    Li, Jianxin
    Wu, Dan
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [49] PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting
    Shin, Yuyol
    Yoon, Yoonjin
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7633 - 7644
  • [50] AdpSTGCN: Adaptive spatial-temporal graph convolutional network for traffic forecasting
    Zhang, Xudong
    Chen, Xuewen
    Tang, Haina
    Wu, Yulei
    Shen, Hanji
    Li, Jun
    [J]. KNOWLEDGE-BASED SYSTEMS, 2024, 301