Optimization of spatial-temporal graph: A taxi demand forecasting model based on spatial-temporal tree

被引:1
|
作者
Li, Jianbo [1 ]
Lv, Zhiqiang [1 ,2 ]
Ma, Zhaobin [1 ]
Wang, Xiaotong [1 ]
Xu, Zhihao [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266701, Peoples R China
[2] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent transportation system; Taxi demand; Graph structure; Tree structure; Multiple factors; PREDICTION;
D O I
10.1016/j.inffus.2023.102178
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Taxi is one of the important means of transportation for people's daily travel activities, and it is one of the important research objects of intelligent transportation system. Taxi demand forecasting research can promote the application of urban transportation basic services and the transportation department to analyze and allocate transportation resources more reasonably. Graph structure is an important method for capturing spatial correlations among urban regions. However, it has certain limitations in capturing the hierarchical features and the local path features of regional nodes. Additionally, existing research has failed to capture multiple factors influencing changes in taxi demand. Therefore, this study proposes a spatial-temporal model based on capturing multi-factor features. The model innovatively uses the tree structure as a topology structure and proposes the tree convolution for constructing data spatial distribution features. The spatial-temporal convolution module with tree convolution as the core can effectively capture the hierarchical features and the local path features among area nodes. In this study, four factors affecting taxi demand are designed. The deep features of the four factors are further fused through the spatial-temporal convolution module. The model integrates multiple influencing factors affecting taxi demand from the spatial-temporal level and shows certain advantages in experiments. Compared with existing baselines, the model designed in this paper shows certain advantages in three real urban taxi datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Spatial-temporal forecasting of tourism demand
    Yang, Yang
    Zhang, Honglei
    [J]. ANNALS OF TOURISM RESEARCH, 2019, 75 : 106 - 119
  • [2] Spatial-Temporal Graph Attention Model on Traffic Forecasting
    Zhang, Xinlan
    Zhang, Zhenguo
    Jin, Xiaofeng
    [J]. 2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 999 - 1003
  • [3] Spatial-Temporal Diffusion Convolutional Network: A Novel Framework for Taxi Demand Forecasting
    Luo, Aling
    Shangguan, Boyi
    Yang, Can
    Gao, Fan
    Fang, Zhe
    Yu, Dayu
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (03)
  • [4] Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting
    Song, Chao
    Lin, Youfang
    Guo, Shengnan
    Wan, Huaiyu
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 914 - 921
  • [5] A graph-attention based spatial-temporal learning framework for tourism demand forecasting
    Zhou, Binggui
    Dong, Yunxuan
    Yang, Guanghua
    Hou, Fen
    Hu, Zheng
    Xu, Suxiu
    Ma, Shaodan
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 263
  • [6] Video summarization by spatial-temporal graph optimization
    Lu, S
    Lyu, MR
    King, I
    [J]. 2004 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 2, PROCEEDINGS, 2004, : 197 - 200
  • [7] Graph Convolution Based Spatial-Temporal Attention LSTM Model for Flood Forecasting
    Feng, Jun
    Sha, Haichao
    Ding, Yukai
    Yan, Le
    Yu, Zhangheng
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [8] Spatial-Temporal Graph-Based Transformer Model for Traffic Flow Forecasting
    Wang, Qichao
    He, Guojun
    Lu, Peiyu
    Chen, Qiyang
    Chen, Yanrong
    Huang, Wei
    [J]. 2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 2806 - 2811
  • [9] Tourism demand forecasting: a deep learning model based on spatial-temporal transformer
    Chen, Jiaying
    Li, Cheng
    Huang, Liyao
    Zheng, Weimin
    [J]. TOURISM REVIEW, 2023,
  • [10] A spatial-temporal graph gated transformer for traffic forecasting
    Bouchemoukha, Haroun
    Zennir, Mohamed Nadjib
    Alioua, Ahmed
    [J]. TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2024, 35 (07):