Comparative Physiological and Transcriptome Analysis of Crossostephium chinense Reveals Its Molecular Mechanisms of Salt Tolerance

被引:0
|
作者
Wang, Yuxin [1 ]
Liu, Miao [1 ]
Guo, Ziyu [1 ]
Liang, Yilin [1 ]
Lu, Yufan [1 ]
Xu, Yuxian [1 ]
Sun, Ming [1 ]
机构
[1] Beijing Forestry Univ, Natl Engn Res Ctr Floriculture, Sch Landscape Architecture, State Key Lab Efficient Prod Forest Resources,Bei, Beijing 100083, Peoples R China
关键词
salt stress; Crossostephium chinense; ABA signaling transduction; molecular mechanism; PLANT-RESPONSES; PROTEIN-KINASES; STRESS; ABA; CHRYSANTHEMUM; DROUGHT; REGULATORS;
D O I
10.3390/ijms242316812
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Crossostephium chinense is a wild species with strong salt tolerance that has great potential to improve the salt tolerance of cultivated chrysanthemums. Conversely, the unique salt-tolerant molecular mechanisms of Cr. chinense are still unclear. This study performed a comparative physiological and transcriptome analysis of Cr. chinense, Chrysanthemum lavandulifolium, and three hybrids to investigate the salt-tolerant molecular mechanisms of Cr. chinense. The physiological results showed that Cr. chinense maintained higher superoxide dismutase (SOD) activity, alleviating oxidative damage to the membrane. KEGG enrichment analysis showed that plant hormone signaling transduction and the MAPK signaling pathway were mostly enriched in Cr. chinense and hybrids under salt stress. Further weighted gene co-expression network analysis (WGCNA) of DEGs suggested that abscisic acid (ABA) signaling transduction may play a significant role in the salt-tolerant mechanisms of Cr. chinense and hybrids. The tissue-specific expression patterns of the candidate genes related to ABA signaling transduction and the MAPK signaling pathway indicate that genes related to ABA signaling transduction demonstrated significant expression levels under salt stress. This study offers important insights into exploring the underlying salt-tolerant mechanisms of Cr. chinense mediated by ABA signaling transduction and broadens our understanding of the breeding strategies for developing salt-tolerant cultivars utilizing salt-tolerant chrysanthemum germplasms.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance
    Mingquan Wang
    Yufeng Wang
    Yifei Zhang
    Chunxia Li
    Shichen Gong
    Shuqin Yan
    Guoliang Li
    Guanghui Hu
    Honglei Ren
    Jianfei Yang
    Tao Yu
    Kejun Yang
    Genes & Genomics, 2019, 41 : 781 - 801
  • [32] Comparative Transcriptome Analysis Reveals Molecular Defensive Mechanism of Arachis hypogaea in Response to Salt Stress
    Zhang, Hao
    Zhao, Xiaobo
    Sun, Quanxi
    Yan, Caixia
    Wang, Juan
    Yuan, Cuiling
    Li, Chunjuan
    Shan, Shihua
    Liu, Fengzhen
    INTERNATIONAL JOURNAL OF GENOMICS, 2020, 2020
  • [33] Comparative Analysis of Physiological, Enzymatic, and Transcriptomic Responses Revealed Mechanisms of Salt Tolerance and Recovery in Tritipyrum
    Peng, Ze
    Wang, Yiqin
    Geng, Guangdong
    Yang, Rui
    Yang, Zhifen
    Yang, Chunmiao
    Xu, Ruhong
    Zhang, Qingqin
    Kakar, Kaleem U.
    Li, Zhenhua
    Zhang, Suqin
    FRONTIERS IN PLANT SCIENCE, 2022, 12
  • [34] Comparative Transcriptome Analysis Reveals the Complex Molecular Mechanisms Underlying Ultraviolet-B Tolerance in Brassica rapa var. rapa
    Zhang, Yu
    Du, Jiancan
    Ni, Tingting
    Yang, Danni
    Wang, Chongde
    Yang, Yunqiang
    Duan, Yuanwen
    Yang, Yongping
    Sun, Xudong
    JOURNAL OF PLANT GROWTH REGULATION, 2024, 43 (08) : 2586 - 2598
  • [35] Comparative Physiological and Transcriptome Analysis Reveals Potential Pathways and Specific Genes Involved in Waterlogging Tolerance in Apple Rootstocks
    Zhang, Kunxi
    Chen, Xiaofei
    Yuan, Penghao
    Song, Chunhui
    Song, Shangwei
    Jiao, Jian
    Wang, Miaomiao
    Hao, Pengbo
    Zheng, Xianbo
    Bai, Tuanhui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
  • [36] Comparative physiological and transcriptome analysis reveals the potential mechanism of selenium accumulation and tolerance to selenate toxicity of Broussonetia papyrifera
    Chen, Qiangwen
    Yu, Li
    Chao, Wei
    Xiang, Juan
    Yang, Xiaoyan
    Ye, Jiabao
    Liao, Xiaoli
    Zhou, Xian
    Rao, Shen
    Cheng, Shuiyuan
    Cong, Xin
    Xiao, Bo
    Xu, Feng
    TREE PHYSIOLOGY, 2022, 42 (12) : 2578 - 2595
  • [37] A Comparative Transcriptome Analysis Reveals the Molecular Mechanisms That Underlie Somatic Embryogenesis in Peaonia ostii 'Fengdan'
    Ci, Huiting
    Li, Changyue
    Aung, Theint Thinzar
    Wang, Shunli
    Yun, Chen
    Wang, Fang
    Ren, Xiuxia
    Zhang, Xiuxin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (18)
  • [38] Comparative Physiological and Transcriptomic Profiling Reveals the Characteristics of Tissue Tolerance Mechanisms in the japonica Rice Landrace Under Salt Stress
    Fauzia, Anisa Nazera
    Nampei, Mami
    Jiadkong, Kamonthip
    Shinta
    Sreewongchai, Tanee
    Ueda, Akihiro
    JOURNAL OF PLANT GROWTH REGULATION, 2024, : 3729 - 3742
  • [39] Composition Characterization of Crossostephium chinense Leaf Essential Oil and Its Anti-Inflammatory Activity Mechanisms
    Lin, Chia-Hsin
    Chiang, Yu-Ting
    Lin, Li-Yin
    Tsao, Nai-Wen
    Wang, Chung-Hsuan
    Chien, Shih-Chang
    Sun, Ying-Hsuan
    Wang, Sheng-Yang
    PLANTS-BASEL, 2024, 13 (17):
  • [40] Transcriptome Analysis Reveals the Stress Tolerance Mechanisms of Cadmium in Zoysia japonica
    Xu, Yi
    Li, Yonglong
    Li, Yan
    Zhai, Chenyuan
    Zhang, Kun
    PLANTS-BASEL, 2023, 12 (22):