Diffusiophoresis-enhanced particle deposition for additive manufacturing

被引:4
|
作者
Ghosh, Samannoy [1 ]
Lee, Saebom [2 ]
Johnson, Marshall V. [3 ]
Hardin, James [4 ]
Doan, Viet Sang [5 ]
Shin, Sangwoo [5 ]
Kalidindi, Surya R. [3 ]
Lee, Jinkee [2 ]
Ault, Jesse T. [6 ]
Kong, Yong Lin [1 ]
机构
[1] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
[2] Sungkyunkwan Univ, Sch Mech Engn, Suwon 16419, Gyeonggi Do, South Korea
[3] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30313 USA
[4] Air Force Res Lab, Mat & Mfg Directorate, Dayton, OH 45433 USA
[5] Univ Buffalo State Univ New York, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
[6] Brown Univ, Ctr Fluid Dynam, Sch Engn, Providence, RI 02912 USA
基金
美国国家卫生研究院; 美国国家科学基金会; 新加坡国家研究基金会;
关键词
Additive manufacturing; 3D printing; Self-assembly; CHEMICAL GRADIENTS; COLLOID TRANSPORT; MOTION;
D O I
10.1557/s43579-023-00432-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The ability to govern particle assembly in an evaporative-driven additive manufacturing (AM) can realize multi-scale features fundamental to creating printed electronics. However, existing techniques remain challenging and often require templates or contaminating solutes. We explore the control of particle deposition in 3D-printed colloids by diffusiophoresis, a previously unexplored mechanism in multi-scale AM. Diffusiophoresis can introduce spontaneous phoretic particle motion by establishing local solute concentration gradients. We show that diffusiophoresis can play a dominant role in complex evaporative-driven particle assembly, enabling a fundamentally new and versatile control of particle deposition in a multi-scale AM process.
引用
收藏
页码:1053 / 1062
页数:10
相关论文
共 50 条
  • [41] A new additive manufacturing process based on friction deposition
    Dilip, J. John Samuel
    Rafi, H. Kalid
    Ram, G. D. Janaki
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2011, 64 (1-2) : 27 - 30
  • [42] Extrusion strategies in fused deposition additive manufacturing: A review
    Krishnanand
    Singh, Varanjot
    Mittal, Vatsal
    Branwal, Amar Kumar
    Sharma, Krishnendra
    Taufik, Mohammad
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2024, 238 (02) : 988 - 1012
  • [43] Direct Laser Additive Manufacturing of Ceramics by Powder Deposition
    Odinot, Julie
    Julian-Jankowiak, Aurelie
    Petit, Johan
    Choron, Damien
    Boisselier, Didier
    Thomas, Marc
    THERMEC 2018: 10TH INTERNATIONAL CONFERENCE ON PROCESSING AND MANUFACTURING OF ADVANCED MATERIALS, 2018, 941 : 2178 - 2183
  • [44] Additive manufacturing and repair by using laser metal deposition
    MORIHASHI R.
    IWASAKI H.
    Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2021, 90 (02): : 19 - 24
  • [45] Additive Manufacturing by Wire based Laser Metal Deposition
    Valentin, M.
    Arnaud, C.
    Kling, R.
    LASER 3D MANUFACTURING VI, 2019, 10909
  • [46] Additive Manufacturing of Aluminum Using Friction Stir Deposition
    Elfishawy, Ebtessam
    Ahmed, M. M. Z.
    Seleman, M. M. El-Sayed
    TMS 2020 149TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2020, : 227 - 238
  • [47] PARTICLE INTERACTIONS IN DIFFUSIOPHORESIS IN NONELECTROLYTE GRADIENTS
    KEH, HJ
    LUO, SC
    PHYSICS OF FLUIDS, 1995, 7 (09) : 2122 - 2131
  • [48] Additive friction stir deposition: a deformation processing route to metal additive manufacturing
    Yu, Hang Z.
    Mishra, Rajiv S.
    MATERIALS RESEARCH LETTERS, 2021, 9 (02): : 71 - 83
  • [49] Influence of particle size on powder rheology and effects on mass flow during directed energy deposition additive manufacturing
    Iams, A. D.
    Gao, M. Z.
    Shetty, A.
    Palmer, T. A.
    POWDER TECHNOLOGY, 2022, 396 : 316 - 326
  • [50] Electromagnetic wave-based analysis of laser-particle interactions in directed energy deposition additive manufacturing
    Zhang, Z.
    Ge, P.
    Li, T.
    Lindgren, L. -E.
    Liu, W. W.
    Zhao, G. Z.
    Guo, X.
    ADDITIVE MANUFACTURING, 2020, 34