Comparative Study On Segmentation Methods Of Fundus Images

被引:0
|
作者
Cao, Juan [1 ]
Liu, JinJia [1 ]
机构
[1] Chongqing Jiaotong Univ, Sch Informat, Chongqing 400074, Peoples R China
来源
2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS | 2023年
基金
中国国家自然科学基金;
关键词
Image Segmentation Algorithm; Comparative Analysis; OPTIC DISC;
D O I
10.1109/DDCLS58216.2023.10167377
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a traditional image segmentation method, image segmentation methods based on threshold, edge detection, and region have some differences in the effect of fundus image segmentation. In this paper, the watershed algorithm, Otsu, and Canny operator edge detection algorithms are selected for comparative study. By comparing the segmentation performance of two CHASEDB1 datasets and DRIVE datasets of fundus images, the experimental results showed that the Otsu had the highest segmentation accuracy and best segmentation effect on fundus images.
引用
收藏
页码:400 / 405
页数:6
相关论文
共 50 条
  • [31] Blood Vessel Segmentation In Fundus Images And Detection Of Glaucoma
    LekshmiShyam
    Kumar, G. S.
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS (COMNET), 2016, : 34 - 38
  • [32] A Fast Algorithm for Optic Disc Segmentation in Fundus Images
    Santhakumar, R.
    Rajkumar, E. R.
    Tandur, Megha
    Geetha, K. S.
    Rajamani, Kumar Thirunellai
    Haritz, Girish
    2016 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2016, : 716 - 719
  • [33] Precise Segmentation of the Optic Disc in Retinal Fundus Images
    Fraga, A.
    Barreira, N.
    Ortega, M.
    Penedo, M. G.
    Carreira, M. J.
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2011, PT I, 2012, 6927 : 584 - 591
  • [34] Bin loss for hard exudates segmentation in fundus images
    Guo, Song
    Wang, Kai
    Kang, Hong
    Liu, Teng
    Gao, Yingqi
    Li, Tao
    NEUROCOMPUTING, 2020, 392 : 314 - 324
  • [35] Intelligent feature selection technique for segmentation of fundus images
    Ilyasova, Nataly
    Paringer, Rustam
    Kupriyanov, Alexandr
    Kirsh, Dmitriy
    2017 SEVENTH INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING TECHNOLOGY (INTECH 2017), 2017, : 138 - 143
  • [36] Incremental learning for exudate and hemorrhage segmentation on fundus images
    He, Wanji
    Wang, Xin
    Wang, Lin
    Huang, Yelin
    Yang, Zhiwen
    Yao, Xuan
    Zhao, Xin
    Ju, Lie
    Wu, Liao
    Wu, Lin
    Lu, Huimin
    Ge, Zongyuan
    INFORMATION FUSION, 2021, 73 : 157 - 164
  • [37] A Novel Vessel Segmentation in Fundus Images based on SVM
    Wang, Yue-Bin
    Zhu, Cheng-Zhang
    Yan, Quan-Feng
    Liu, Li-Qiang
    2016 INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI 2016), 2016, : 390 - 394
  • [38] Deep Learning Based Lesion Segmentation in Fundus Images
    Yang, Lin
    Xu, Shawn
    Yang, Lu
    Huang, Abigail E.
    Traynis, Ilana
    Balasubramanian, Siva
    Ali, Tayyeba K.
    Golden, Daniel
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [39] Robust Blood Vessel Segmentation Algorithm for Fundus Images
    Salih, N. D.
    Saleh, Marwan D.
    6TH IEEE INTERNATIONAL CONFERENCE ON RECENT ADVANCES AND INNOVATIONS IN ENGINEERING (ICRAIE), 2021,
  • [40] Automated detection and segmentation of drusen in retinal fundus images
    Mittal, Deepti
    Kumari, Kajal
    COMPUTERS & ELECTRICAL ENGINEERING, 2015, 47 : 82 - 95