Multistability of elasto-inertial two-dimensional channel flow

被引:1
|
作者
Beneitez, Miguel [1 ]
Page, Jacob [2 ]
Dubief, Yves [3 ]
Kerswell, Rich R. [1 ]
机构
[1] Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Scotland
[3] Univ Vermont, Dept Mech Engn, Burlington, VT 05405 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
transition to turbulence; viscoelasticity; DRAG REDUCTION; PIPE-FLOW; TRANSITION; INSTABILITIES; TURBULENT; STABILITY; BOUNDARY; ONSET;
D O I
10.1017/jfm.2024.50
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Elasto-inertial turbulence (EIT) is a recently discovered two-dimensional chaotic flow state observed in dilute polymer solutions. Two possibilities are currently hypothesized to be linked to the dynamical origins of EIT: (i) viscoelastic Tollmien-Schlichting waves and (ii) a centre-mode instability. The nonlinear evolution of the centre mode leads to a travelling wave with an 'arrowhead' structure in the polymer conformation, a structure also observed instantaneously in simulations of EIT. In this work we conduct a suite of two-dimensional direct numerical simulations spanning a wide range of polymeric flow parameters to examine the possible dynamical connection between the arrowhead and EIT. Our calculations reveal (up to) four coexistent attractors: the laminar state and a steady arrowhead regime (SAR), along with EIT and a 'chaotic arrowhead regime' (CAR). The SAR is stable for all parameters considered here, while the final pair of (chaotic) flow states are visually very similar and can be distinguished only by the presence of a weak polymer arrowhead structure in the CAR regime. Analysis of energy transfers between the flow and the polymer indicates that both chaotic regimes are maintained by an identical near-wall mechanism and that the weak arrowhead does not play a role. Our results suggest that the arrowhead is a benign flow structure that is disconnected from the self-sustaining mechanics of EIT.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [31] Friction dynamics of elasto-inertial turbulence in Taylor-Couette flow of viscoelastic fluids
    Moazzen, Masoud
    Lacassagne, Tom
    Thomy, Vincent
    Bahrani, S. Amir
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2246):
  • [32] Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays
    Yuan, D.
    Zhang, J.
    Yan, S.
    Pan, C.
    Alici, G.
    Nguyen, N. T.
    Li, W. H.
    BIOMICROFLUIDICS, 2015, 9 (04):
  • [33] Piston flow in a two-dimensional channel
    Katopodes, FV
    Davis, AMJ
    Stone, HA
    PHYSICS OF FLUIDS, 2000, 12 (05) : 1240 - 1243
  • [34] Multistability and symmetry breaking in the two-dimensional flow around a square cylinder
    Shiau, YH
    Peng, YF
    Hwang, RR
    Hu, CK
    PHYSICAL REVIEW E, 1999, 60 (05) : 6188 - 6191
  • [35] Dynamically tunable elasto-inertial particle focusing and sorting in microfluidics
    Zhou, Yinning
    Ma, Zhichao
    Ai, Ye
    LAB ON A CHIP, 2020, 20 (03) : 568 - 581
  • [36] Numerical simulation of elasto-inertial focusing of particles in straight microchannels
    Jiang, Di
    Ni, Chen
    Tang, Wenlai
    Xiang, Nan
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (06)
  • [37] Elasto-inertial turbulence (vol 110, pg 10557, 2013)
    Samanta, Devranjan
    Dubief, Yves
    Holzner, Markus
    Schaefer, Christof
    Morozov, Alexander N.
    Wagner, Christian
    Hof, Bjoern
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (30) : 12498 - 12498
  • [38] Elasto-inertial particle migration in a confined simple shear-flow of Giesekus viscoelastic fluids
    Liu, Bingrui
    Lin, Jianzhong
    Ku, Xiaoke
    Yu, Zhaosheng
    PARTICULATE SCIENCE AND TECHNOLOGY, 2021, 39 (06) : 726 - 737
  • [39] Sheathless Dean-flow-coupled elasto-inertial particle focusing and separation in viscoelastic fluid
    Yuan, Dan
    Tan, Say Hwa
    Zhao, Qianbin
    Yan, Sheng
    Sluyter, Ronald
    Nguyen, N. T.
    Zhang, Jun
    Li, Weihua
    RSC ADVANCES, 2017, 7 (06): : 3461 - 3469
  • [40] Dean-flow-coupled elasto-inertial particle and cell focusing in symmetric serpentine microchannels
    Yuan, Dan
    Sluyter, Ronald
    Zhao, Qianbin
    Tang, Shiyang
    Yan, Sheng
    Yun, Guolin
    Li, Ming
    Zhang, Jun
    Li, Weihua
    MICROFLUIDICS AND NANOFLUIDICS, 2019, 23 (03)