Multistability of elasto-inertial two-dimensional channel flow

被引:1
|
作者
Beneitez, Miguel [1 ]
Page, Jacob [2 ]
Dubief, Yves [3 ]
Kerswell, Rich R. [1 ]
机构
[1] Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Scotland
[3] Univ Vermont, Dept Mech Engn, Burlington, VT 05405 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
transition to turbulence; viscoelasticity; DRAG REDUCTION; PIPE-FLOW; TRANSITION; INSTABILITIES; TURBULENT; STABILITY; BOUNDARY; ONSET;
D O I
10.1017/jfm.2024.50
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Elasto-inertial turbulence (EIT) is a recently discovered two-dimensional chaotic flow state observed in dilute polymer solutions. Two possibilities are currently hypothesized to be linked to the dynamical origins of EIT: (i) viscoelastic Tollmien-Schlichting waves and (ii) a centre-mode instability. The nonlinear evolution of the centre mode leads to a travelling wave with an 'arrowhead' structure in the polymer conformation, a structure also observed instantaneously in simulations of EIT. In this work we conduct a suite of two-dimensional direct numerical simulations spanning a wide range of polymeric flow parameters to examine the possible dynamical connection between the arrowhead and EIT. Our calculations reveal (up to) four coexistent attractors: the laminar state and a steady arrowhead regime (SAR), along with EIT and a 'chaotic arrowhead regime' (CAR). The SAR is stable for all parameters considered here, while the final pair of (chaotic) flow states are visually very similar and can be distinguished only by the presence of a weak polymer arrowhead structure in the CAR regime. Analysis of energy transfers between the flow and the polymer indicates that both chaotic regimes are maintained by an identical near-wall mechanism and that the weak arrowhead does not play a role. Our results suggest that the arrowhead is a benign flow structure that is disconnected from the self-sustaining mechanics of EIT.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [1] The minimal flow unit and origin of two-dimensional elasto-inertial turbulence
    Zhang, Hongna
    Cheng, Haotian
    Wang, Suming
    Zhang, Wenhua
    Li, Xiaobin
    Li, Fengchen
    Journal of Fluid Mechanics, 2024, 999
  • [2] Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction
    Sid, S.
    Terrapon, V. E.
    Dubief, Y.
    PHYSICAL REVIEW FLUIDS, 2018, 3 (01):
  • [3] Elasto-Inertial Turbulence
    Dubief, Yves
    Terrapon, Vincent E.
    Hof, Bjoern
    ANNUAL REVIEW OF FLUID MECHANICS, 2023, 55 : 675 - 705
  • [4] Elasto-inertial turbulence
    Samanta, Devranjan
    Dubief, Yves
    Holzner, Markus
    Schaefer, Christof
    Morozov, Alexander N.
    Wagner, Christian
    Hof, Bjoern
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (26) : 10557 - 10562
  • [5] Analogue tuning of particle focusing in elasto-inertial flow
    I. Banerjee
    M. E. Rosti
    T. Kumar
    L. Brandt
    A. Russom
    Meccanica, 2021, 56 : 1739 - 1749
  • [6] Elasto-inertial instabilities in the merging flow of viscoelastic fluids
    Raihan, Mahmud Kamal
    Kim, Nayoung
    Song, Yongxin
    Xuan, Xiangchun
    SOFT MATTER, 2024, 20 (30) : 6059 - 6067
  • [7] Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel
    Kim, Bookun
    Kim, Ju Min
    BIOMICROFLUIDICS, 2016, 10 (02)
  • [8] Elasto-inertial rectification of oscillatory flow in an elastic tube
    Zhang, Xirui
    Rallabandi, Bhargav
    Journal of Fluid Mechanics, 2024, 996
  • [9] On the mechanism of elasto-inertial turbulence
    Dubief, Yves
    Terrapon, Vincent E.
    Soria, Julio
    PHYSICS OF FLUIDS, 2013, 25 (11)
  • [10] Continuous Pathway between the Elasto-Inertial and Elastic Turbulent States in Viscoelastic Channel Flow
    Khalid, Mohammad
    Shankar, V
    Subramanian, Ganesh
    PHYSICAL REVIEW LETTERS, 2021, 127 (13)