Enhanced MIMO CSI Estimation Using ACCPM with Limited Feedback

被引:0
|
作者
Al-Asadi, Ahmed [1 ]
Al-Saedi, Ibtesam R. K. [1 ,2 ]
Alwane, Saddam K. [1 ]
Li, Hongxiang [2 ]
Alzubaidi, Laith [3 ,4 ]
机构
[1] Univ Technol Baghdad, Commun Engn Dept, PO Box 19006, Baghdad, Iraq
[2] Univ Louisville, Elect & Comp Engn Dept, Louisville, KY 40292 USA
[3] Queensland Univ Technol, Sch Mech Med & Proc Engn, Brisbane, Qld 4000, Australia
[4] Queensland Univ Technol, Ctr Data Sci, Brisbane, Qld 4000, Australia
关键词
MIMO; CSI; beamforming; ACCPM; downlink; channel model; Gram-Schmidt process; SECRECY RATE MAXIMIZATION; MASSIVE MIMO; CHANNEL ESTIMATION; INFORMATION; DESIGN;
D O I
10.3390/s23187965
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Multiple Input and Multiple Output (MIMO) is a promising technology to enable spatial multiplexing and improve throughput in wireless communication networks. To obtain the full benefits of MIMO systems, the Channel State Information (CSI) should be acquired correctly at the transmitter side for optimal beamforming design. The analytical centre-cutting plane method (ACCPM) has shown to be an appealing way to obtain the CSI at the transmitter side. This paper adopts ACCPM to learn down-link CSI in both single-user and multi-user scenarios. In particular, during the learning phase, it uses the null space beamforming vector of the estimated CSI to reduce the power usage, which approaches zero when the learned CSI approaches the optimal solution. Simulation results show our proposed method converges and outperforms previous studies. The effectiveness of the proposed method was corroborated by applying it to the scattering channel and winner II channel models.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Study of Posture Estimation Using MIMO Sensor Based on CSI
    Ohta, Tsuyoshi
    Nishimori, Kentaro
    Taniguchi, Ryotaro
    2020 INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION (ISAP), 2021, : 845 - 846
  • [22] A Novel Approach Using Convolutional Transformer for Massive MIMO CSI Feedback
    Bi, Xiaojun
    Li, Shuo
    Yu, Changdong
    Zhang, Yu
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (05) : 1017 - 1021
  • [23] Enhanced Meta-Transfer Learning Assisted CSI Feedback in Massive MIMO Systems
    Zhao, Haitao
    Liu, Wei
    Xia, Wenchao
    Shen, Yingying
    Zhu, Hongbo
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2025, 14 (02) : 499 - 503
  • [24] AI-enhanced Codebook-based CSI Feedback in FDD Massive MIMO
    Guo, Jiajia
    Wen, Chao-Kai
    Chen, Muhan
    Jin, Shi
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [25] Enhanced DOA Estimation for MIMO radar in the Case of Limited Snapshots
    Ma, Yanan
    Cao, Xianbin
    Wang, Xiangrong
    2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2020,
  • [26] CSI Feedback Reduction for MIMO Interference Alignment
    Rao, Xiongbin
    Ruan, Liangzhong
    Lau, Vincent K. N.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (18) : 4428 - 4437
  • [27] FDD Massive MIMO with Analog CSI Feedback
    Truong, Kien T.
    Nikopour, Hosein
    Heath, Robert W., Jr.
    2015 49TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2015, : 322 - 327
  • [28] Deep CSI Feedback for FDD MIMO Systems
    He, Zibo
    Zhao, Long
    Luo, Xiangchen
    Cheng, Binyao
    COMMUNICATIONS AND NETWORKING (CHINACOM 2021), 2022, : 366 - 376
  • [29] Combining Reciprocity and CSI Feedback in MIMO Systems
    Becirovic, Ema
    Bjornson, Emil
    Larsson, Erik G.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (11) : 10065 - 10080
  • [30] CSI Feedback Allocation in Multicell MIMO Channels
    de Kerret, Paul
    Gesbert, David
    2012 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2012, : 2313 - 2317