Knowledge of plant photosynthesis, biomass, and stress resistance could contribute to exploring the growth and restoration of vegetation. However, the response of these plant traits to plant-soil interactions at different successional stages remains poorly understood, which limits the understanding of secondary succession. A greenhouse experiment was designed to test the effects of rhizosphere soils collected from early- (EarlySoil), mid- (MidSoil), and late-successional (LateSoil) plant communities on plant traits of early-, mid-, and late-successional species (EarlySp, MidSp, and LateSp, respectively). We found that plant traits reacted in a specific direction to plant-soil interactions at different successional stages. Specifically, compared with treatments of plants growing in their own soil, the net photosynthetic rate and single-photon avalanche diode significantly increased in LateSp-EarlySoil (treatment of plants growing in soil) (20%-31%) and LateSp-MidSoil (10%-18%); the maximum quantum efficiency of photosystem II increased in MidSp-EarlySoil (1%) and LateSp-MidSoil (4%); belowground soluble sugar concentrations decreased in LateSp-EarlySoil (33%) and LateSp-MidSoil (45%); leaf, stem, and root biomass increased in MidSp-EarlySoil (76%-123%), LateSp-EarlySoil (180%-342%), and LateSp-MidSoil (83%-137%), and in turn they decreased in EarlySp-MidSoil (40%-73%) and EarlySp-LateSoil (53%-67%). The results indicated that soil conditioned by pre-successional species (early- or mid-successional species) would be conducive to plant functional traits of subsequent successional species (mid- or late-successional species). Constrained redundancy analysis and path analysis suggested that water-soluble ammonium N, total N, and available N concentrations were key soil factors affecting early-, mid-, and late-successional species, respectively. Our findings confirm the directionality of succession and provide new information for plant population dynamics during secondary succession.