Operators in Rigged Hilbert Spaces, Gel'fand Bases and Generalized Eigenvalues

被引:2
|
作者
Antoine, Jean-Pierre [1 ]
Trapani, Camillo [2 ]
机构
[1] Catholic Univ Louvain, Inst Rech Math & Phys, B-1348 Louvain la Neuve, Belgium
[2] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
关键词
rigged Hilbert space; generalized eigenvectors; simple spectrum; QUANTUM-MECHANICS; SYMMETRY PROBLEMS; DIRAC FORMALISM;
D O I
10.3390/math11010195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a self-adjoint operator A in a Hilbert space H, we analyze its spectral behavior when it is expressed in terms of generalized eigenvectors. Using the formalism of Gel'fand distribution bases, we explore the conditions for the generalized eigenspaces to be one-dimensional, i.e., for A to have a simple spectrum.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Spherical harmonics and rigged Hilbert spaces
    Celeghini, E.
    Gadella, M.
    del Olmo, M. A.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (05)
  • [22] A constructive presentation of rigged Hilbert spaces
    Celeghini, Enrico
    7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626
  • [23] Generalized Weaving Frames for Operators in Hilbert Spaces
    Lalit K. Deepshikha
    Geetika Vashisht
    Results in Mathematics, 2017, 72 : 1369 - 1391
  • [24] GENERALIZED ATOMIC SUBSPACES FOR OPERATORS IN HILBERT SPACES
    Ghosh, Prasenjit
    Samanta, Tapas Kumar
    MATHEMATICA BOHEMICA, 2022, 147 (03): : 325 - 345
  • [25] GENERALIZED FRAMES FOR CONTROLLED OPERATORS IN HILBERT SPACES
    Li, Dongwei
    Leng, Jinsong
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (04): : 537 - 552
  • [26] Generalized Hilbert operators on weighted Bergman spaces
    Angel Pelaez, Jose
    Rattya, Jouni
    ADVANCES IN MATHEMATICS, 2013, 240 : 227 - 267
  • [27] Generalized Weaving Frames for Operators in Hilbert Spaces
    Deepshikha
    Vashisht, Lalit K.
    Verma, Geetika
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1369 - 1391
  • [28] Bases of Banach and Hilbert Spaces Transformed by Linear Operators
    Navascues, M. A.
    Viswanathan, P.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (05) : 2277 - 2301
  • [29] Bases of Banach and Hilbert Spaces Transformed by Linear Operators
    M. A. Navascués
    P. Viswanathan
    Complex Analysis and Operator Theory, 2019, 13 : 2277 - 2301
  • [30] Application of the Rigged Hilbert Spaces into the Generalized Signals and Systems Theory: Practical Example
    Heredia-Juesas, J.
    Gago-Ribas, E.
    Vidal-Garcia, P.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 4728 - 4733