Efficient analysis of hydrological connectivity using 1D and 2D Convolutional Neural Networks

被引:0
|
作者
Nguyen, Chi [1 ,2 ]
Tan, Chang Wei [3 ]
Daly, Edoardo [1 ]
Pauwels, Valentijn R. N. [1 ]
机构
[1] Monash Univ, Dept Civil Engn, Clayton, Vic, Australia
[2] CSIRO Environm, Black Mt, ACT, Australia
[3] Monash Univ, Dept Data Sci & AI, Clayton, Vic, Australia
关键词
Convolutional neural network; Functional connectivity; Potential connection length; SURFACE-WATER; FLOODPLAIN INUNDATION; FLOW CONNECTIVITY; WETLANDS; RESOLUTION; SEDIMENT; DYNAMICS; MURRAY; MODEL;
D O I
10.1016/j.advwatres.2023.104583
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Understanding hydrological connectivity is essential to investigate ecological processes in river catchments and floodplains. Assessing flooding behavior, including flooded areas and connection times, is required to analyze hydrological connectivity in river floodplains. Deep learning, especially Convolutional Neural Networks (CNNs), is an attractive alternative to hydrodynamic modeling, which is more computationally expensive. This paper aims to develop a methodology to analyze the functional connectivity in remote and field measurement data-scarce areas using remote sensing data, CNN models, and connectivity metrics. The northern Lakes of the Narran River catchment, located in the Condamine-Balonne River floodplain in New South Wales, Australia, is the showcase for this method. One-dimensional CNN and two-dimensional U-Net configurations were applied and yielded comparable flood extents to the satellite images with Hit Rate values of 0.853 and 0.873, respectively. Two algorithms for determining hydrological connectivity were investigated, including the geostatistical Connectivity Function (CF) and the newly proposed Potential Connection Length (PCL). It was found that the connection along the main Narran River stream was more substantial than between the river and the floodplain lakes. The analysis using the PCL shows that the connectivity patterns in different stages of a flood event can vary depending on the initial condition of the floodplain. The overall conclusion from this work is that hydrological connectivity can be assessed computationally efficiently using only remote sensing, discharge data, and CNN models.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A comparative Analysis of 1D Convolutional Neural Networks for Bearing Fault Diagnosis
    Bapir, Aydil
    Aydin, Ilhan
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1406 - 1411
  • [22] Wall segmentation in 2D images using convolutional neural networks
    Bjekic, Mihailo
    Lazovic, Ana
    Venkatachalam, K.
    Bacanin, Nebojsa
    Zivkovic, Miodrag
    Kvascev, Goran
    Nikolic, Bosko
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [23] Arrhythmic Heartbeat Classification Using 2D Convolutional Neural Networks
    Degirmenci, M.
    Ozdemir, M. A.
    Izci, E.
    Akan, A.
    IRBM, 2022, 43 (05) : 422 - 433
  • [24] Human Activity Recognition Using 2D Convolutional Neural Networks
    Gholamrezaii, Marjan
    Almodarresi, Seyed Mohammad Taghi
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 1682 - 1686
  • [25] Sexing white 2D footprints using convolutional neural networks
    Budka, Marcin
    Bennett, Matthew R.
    Reynolds, Sally C.
    Barefoot, Shelby
    Reel, Sarah
    Reidy, Selina
    Walker, Jeremy
    PLOS ONE, 2021, 16 (08):
  • [26] Lipschitz constant estimation for 1D convolutional neural networks
    Pauli, Patricia
    Gramlich, Dennis
    Allgoewer, Frank
    LEARNING FOR DYNAMICS AND CONTROL CONFERENCE, VOL 211, 2023, 211
  • [27] From 1D Convolutional Codes to 2D Convolutional Codes of Rate 1/n
    Almeida, Paulo
    Napp, Diego
    Pinto, Raquel
    CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 25 - 33
  • [28] Graph Classification with 2D Convolutional Neural Networks
    Tixier, Antoine J. -P.
    Nikolentzos, Giannis
    Meladianos, Polykarpos
    Vazirgiannis, Michalis
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: WORKSHOP AND SPECIAL SESSIONS, 2019, 11731 : 578 - 593
  • [29] Efficient connection strategies in 1D and 2D associative memory models with and without displaced connectivity
    Calcraft, Lee
    Adams, Rod
    Davey, Neil
    BIOSYSTEMS, 2008, 94 (1-2) : 87 - 94
  • [30] Efficient 3D Semantic Segmentation of Seismic Images using Orthogonal Planes 2D Convolutional Neural Networks
    Guazzelli, Arthur Bridi
    Roisenberg, Mauro
    Rodrigues, Bruno B.
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,