Dirichlet law for factorisation of integers, polynomials and permutations

被引:0
|
作者
Leung, Sun-Kai [1 ]
机构
[1] Univ Montreal, Dept Math & Stat, CP 6128 succ Ctr Ville, Montreal, PQ H3C3J7, Canada
关键词
11M32; 11N37; 11N60; 05A05; 05A16; 11T06;
D O I
10.1017/S0305004123000427
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let $k \geqslant 2$ be an integer. We prove that factorisation of integers into k parts follows the Dirichlet distribution $\mathrm{Dir}\left({1}/{k},\ldots,{1}/{k}\right)$ by multidimensional contour integration, thereby generalising the Deshouillers-Dress-Tenenbaum (DDT) arcsine law on divisors where $k=2$. The same holds for factorisation of polynomials or permutations. Dirichlet distribution with arbitrary parameters can be modelled similarly.
引用
收藏
页码:649 / 676
页数:28
相关论文
共 50 条