Existence and Asymptotics of Normalized Ground States for a Sobolev Critical Kirchhoff Equation

被引:48
|
作者
Li, Quanqing [1 ]
Nie, Jianjun [2 ]
Zhang, Wen [3 ,4 ]
机构
[1] Honghe Univ, Dept Math, Mengzi 661100, Yunnan, Peoples R China
[2] North China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
[3] Hunan Univ Technol & Business, Coll Sci, Changsha 410205, Hunan, Peoples R China
[4] Univ Craiova, Dept Math, Craiova 200585, Romania
基金
中国国家自然科学基金;
关键词
Normalized ground state solutions; Sobolev critical growth; Sobolev subcritical approximation method; BEHAVIOR;
D O I
10.1007/s12220-022-01171-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we investigate the existence and asymptotic properties of normalized solutions for the following Kirchhoff-type equation with Sobolev critical growth { I-(a + b integral(3)(R) |del u|(2)dx)triangle u + lambda u = mu|u|(p-2)u + |u|(4)u, in R-3, (P) u > 0, integral(3)(R) |u|(2)dx = m(2), in R-3, where a, b, m, mu > 0 and14/3 < p < 6. With the aid of the Sobolev subcritical approximation method that is the first time used to consider mass constrained Kirchhoff-type problems, and Schwartz symmetrization rearrangements, we obtain the existence of normalized ground states. Moreover, the asymptotic behavior of these solutions is also studied.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Existence of Multiple Solutions for Fractional p-Kirchhoff Equation with Critical Sobolev Exponent
    Jiao, Caizhen
    Pei, Ruichang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
  • [22] Existence of Multiple Solutions for Fractional p-Kirchhoff Equation with Critical Sobolev Exponent
    Caizhen Jiao
    Ruichang Pei
    Mediterranean Journal of Mathematics, 2023, 20
  • [23] NORMALIZED SOLUTIONS OF THE AUTONOMOUS KIRCHHOFF EQUATION WITH SOBOLEV CRITICAL EXPONENT: SUB- AND SUPER-CRITICAL CASES
    LI, Quangqing
    Radulescu, Vicentiu D.
    Zhang, Jian
    Zhao, X. I. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (02) : 663 - 678
  • [24] Normalized ground states for a kind of Choquard-Kirchhoff equations with critical nonlinearities
    Fei, Jiayi
    Zhang, Qiongfen
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [25] Normalized ground states for Kirchhoff equations in R3 with a critical nonlinearity
    Zhang, Penghui
    Han, Zhiqing
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (02)
  • [26] The existence of normalized solutions for a fractional Kirchhoff-type equation with doubly critical exponents
    Chen, Wenjing
    Huang, Xiaomeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06):
  • [27] The existence of normalized solutions for a fractional Kirchhoff-type equation with doubly critical exponents
    Wenjing Chen
    Xiaomeng Huang
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [28] Normalized Ground States for the Mass-Energy Doubly Critical Kirchhoff Equations
    Kong, Lingzheng
    Chen, Haibo
    ACTA APPLICANDAE MATHEMATICAE, 2023, 186 (01)
  • [29] Normalized Ground States for the Mass-Energy Doubly Critical Kirchhoff Equations
    Lingzheng Kong
    Haibo Chen
    Acta Applicandae Mathematicae, 2023, 186
  • [30] On the fractional Kirchhoff equation with critical Sobolev exponent
    Yang, Zhipeng
    Zhai, Hao
    Zhao, Fukun
    APPLIED MATHEMATICS LETTERS, 2023, 141