A data-driven model of drop size prediction based on artificial neural networks using small-scale data sets

被引:3
|
作者
Wang, Bo [1 ]
Zhou, Han [1 ]
Jing, Shan [1 ]
Zheng, Qiang [1 ]
Lan, Wenjie [2 ]
Li, Shaowei [1 ,3 ]
机构
[1] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[2] China Petr Univ Beijing, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
[3] Tsinghua Univ, State Key Lab Chem Engn, Beijing 100084, Peoples R China
来源
CHINESE JOURNAL OF CHEMICAL ENGINEERING | 2024年 / 66卷
基金
中国国家自然科学基金;
关键词
Artificial neural network; Drop size; Solvent extraction; Pulsed column; Two-phase flow; Hydrodynamics; SUPPORT VECTOR REGRESSION; BUBBLE-COLUMN REACTORS; PLATE EXTRACTION COLUMN; GAS HOLD-UP; SOLVENT-EXTRACTION; MASS-TRANSFER; PULSED DISC; UNIFIED CORRELATIONS; PRESSURE-DROP; LIQUID;
D O I
10.1016/j.cjche.2023.11.001
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
An artificial neural network (ANN) method is introduced to predict drop size in two kinds of pulsed columns with small-scale data sets. After training, the deviation between calculate and experimental results are 3.8% and 9.3%, respectively. Through ANN model, the influence of interfacial tension and pulsation intensity on the droplet diameter has been developed. Droplet size gradually increases with the increase of interfacial tension, and decreases with the increase of pulse intensity. It can be seen that the accuracy of ANN model in predicting droplet size outside the training set range is reach the same level as the accuracy of correlation obtained based on experiments within this range. For two kinds of columns, the drop size prediction deviations of ANN model are 9.6% and 18.5% and the deviations in correlations are 11% and 15%. (c) 2023 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved.
引用
收藏
页码:71 / 83
页数:13
相关论文
共 50 条
  • [11] Prediction of Frictional Moment of Cylindrical Roller Bearing Using Experimental Data-Driven Artificial Neural Networks
    Hou, Yu
    Wang, Xi
    Xu, Bihe
    Geng, Yangliao
    Li, Qingyong
    Yang, Di
    JOURNAL OF TRIBOLOGY-TRANSACTIONS OF THE ASME, 2023, 145 (09):
  • [12] National scale classification of landslide types by a data-driven approach and Artificial Neural Networks
    Palombi, Lorenzo
    Amato, Gabriele
    Raimondi, Valentina
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS XIII, 2022, 12268
  • [13] Data-driven friction force prediction model for hydraulic actuators using deep neural networks
    Han, Seongji
    Orzechowski, Grzegorz
    Kim, Jin-Gyun
    Mikkola, Aki
    MECHANISM AND MACHINE THEORY, 2024, 192
  • [14] Data-driven modeling and optimization of semibatch reactors using artificial neural networks
    Rani, KY
    Patwardhan, SC
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (23) : 7539 - 7551
  • [15] Robust Data-Driven Control of Artificial Pancreas Systems Using Neural Networks
    Dutta, Souradeep
    Kushner, Taisa
    Sankaranarayanan, Sriram
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY (CMSB 2018), 2018, 11095 : 183 - 202
  • [16] ROBUST DATA-DRIVEN CONTROL OF ARTIFICIAL PANCREAS SYSTEMS USING NEURAL NETWORKS
    Kushner, T.
    Dutta, S.
    Sankaranarayanan, S.
    DIABETES TECHNOLOGY & THERAPEUTICS, 2019, 21 : A83 - A84
  • [17] Data-driven modeling for drop size distributions
    Traverso T.
    Abadie T.
    Matar O.K.
    Magri L.
    Physical Review Fluids, 2023, 8 (10)
  • [18] Small-scale fading prediction using an artificial neural network
    Östlin, E
    Zepernick, HJ
    Suzuki, H
    VTC2005-SPRING: 2005 IEEE 61ST VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS, 2005, : 82 - 86
  • [19] Data-driven forward osmosis model development using multiple linear regression and artificial neural networks
    Gosmann, Lukas
    Geitner, Christian
    Wieler, Nora
    COMPUTERS & CHEMICAL ENGINEERING, 2022, 165
  • [20] Data-Driven Predesign Tool for Small-Scale Centrifugal Compressor in Refrigeration
    Violette, Mounier
    Cyril, Picard
    Jurg, Schiffmann
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2018, 140 (12):