Trusted Collaboration for MEC-Enabled VR Video Streaming: A Multi-Agent Reinforcement Learning Approach

被引:2
|
作者
Xu, Yueqiang [1 ]
Zhang, Heli [1 ]
Li, Xi [1 ]
Yu, F. Richard [2 ]
Leung, Victor C. M. [3 ,4 ]
Ji, Hong [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Minist Educ, Key Lab Universal Wireless Commun, Beijing 100876, Peoples R China
[2] Shenzhen Univ, Shenzhen Key Lab Digital & Intelligent Technol &, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
[4] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
基金
中国国家自然科学基金;
关键词
Trust evaluation; wireless virtual reality; edge collaboration; multi-agent DDPG; WIRELESS NETWORKS; RESOURCE-ALLOCATION; EDGE; AWARE; OPTIMIZATION; PREDICTION;
D O I
10.1109/TVT.2023.3267181
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Collaboration among mobile edge computing (MEC) has been envisioned as a promising paradigm to meet the requirements of wireless virtual reality (VR) applications. However, trust risks create tremendous challenges in MEC collaboration due to the distributed, complex, and unreliable nature of resource providers. In this paper, we present a trusted collaboration framework for VR video streaming to manage the video buffer in VR devices (VDs) under a more realistic distributed environment. In the framework, the rendering tasks can be processed collaboratively among edge servers (ESs) by exploring their behaviors (e.g., selfish behavior, malicious behavior, and cooperative behavior). Considering the collaborator may not be fully trustworthy, we present a novel trust evaluation method by combining direct and indirect values, aiming to ensure reliable collaborator selection. Then, we formulate an optimization problem to maintain an effective buffer state in VR devices (VDs) through jointly optimizing collaborator selection, spectrum allocation, and rendering resource allocation. Due to the fluctuating wireless fading channel and the dynamic video rate, the optimization problem is intractable by adopting traditional methods. Then, we adopt the multi-agent deep deterministic policy gradient (MADDPG) to tackle this dynamic and distributed problem. Simulation results indicate that the proposed approach can achieve a good performance.
引用
收藏
页码:12167 / 12180
页数:14
相关论文
共 50 条
  • [31] Task Scheduling via Modified Deep Reinforcement Learning for MEC-Enabled Industrial IoT
    Wang, Yizhou
    Zhang, Haixia
    Zhou, Xiaotian
    Li, Dongyang
    Yuan, Dongfeng
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 661 - 666
  • [32] A multi-agent reinforcement learning approach to robot soccer
    Yong Duan
    Bao Xia Cui
    Xin He Xu
    Artificial Intelligence Review, 2012, 38 : 193 - 211
  • [33] Deep reinforcement learning based mobility management in a MEC-Enabled cellular IoT network
    Kabir, Homayun
    Tham, Mau-Luen
    Chang, Yoong Choon
    Chow, Chee-Onn
    PERVASIVE AND MOBILE COMPUTING, 2024, 105
  • [34] Multi-Agent Active Search: A Reinforcement Learning Approach
    Igoe, Conor
    Ghods, Ramina
    Schneider, Jeff
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 754 - 761
  • [35] A multi-agent reinforcement learning approach to robot soccer
    Duan, Yong
    Cui, Bao Xia
    Xu, Xin He
    ARTIFICIAL INTELLIGENCE REVIEW, 2012, 38 (03) : 193 - 211
  • [36] Multi-Agent Reinforcement Learning Enabled Spectrum Sharing for Vehicular Networks
    Wang W.-N.
    Su J.
    Chen Y.
    Zhang J.-Z.
    Tang Z.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (05): : 1690 - 1699
  • [37] Multi-Agent Reinforcement Learning
    Stankovic, Milos
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 43 - 43
  • [38] Trustable Policy Collaboration Scheme for Multi-Agent Stigmergic Reinforcement Learning
    Xu, Xing
    Li, Rongpeng
    Zhao, Zhifeng
    Zhang, Honggang
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (04) : 823 - 827
  • [39] Cross-Layer Joint Optimization Algorithm for Adaptive Video Streaming in MEC-Enabled Wireless Networks
    Yeznabad, Yashar Farzaneh
    Helfert, Markus
    Muntean, Gabriel-Miro
    2021 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 2021,
  • [40] Optimizing point-of-sale services in MEC enabled near field wireless communications using multi-agent reinforcement learning
    Rehman, Ateeq Ur
    Maashi, Mashael
    Alsamri, Jamal
    Mahgoub, Hany
    Allafi, Randa
    Dutta, Ashit Kumar
    Khan, Wali Ullah
    Nauman, Ali
    Computer Communications, 2024, 228