Optimal point sets determining few distinct angles

被引:0
|
作者
Fleischmann, Henry L. [1 ]
Miller, Steven J. [2 ]
Palsson, Eyvindur A. [3 ]
Pesikoff, Ethan [4 ]
Wolf, Charles [5 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Williams Coll, Dept Math & Stat, Williamstown, MA 01267 USA
[3] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[4] Yale Univ, Dept Math, New Haven, CT 06511 USA
[5] Dept Math, Rochester, NY 14627 USA
来源
关键词
DISTANCES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P(k) denote the largest size of a non-collinear point set in the plane admitting at most k distinct angles. We prove P (2) = P (3) = 5, and we characterize the optimal sets. We also leverage results from Fleischmann et al. [Disc. Comput. Geom. (2023)] to provide the general bounds k+2 < P(k) < 6k, although the upper bound may be improved pending progress toward the Strong Dirac Conjecture. We conjecture that the lower bound is tight, providing infinite families of configurations meeting the bound and ruling out several classes of potential counterexamples.
引用
下载
收藏
页码:165 / 181
页数:17
相关论文
共 50 条
  • [1] On Optimal Point Sets Determining Distinct Triangles
    Palsson, Eyvindur A.
    Yu, Edward
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (02):
  • [2] Characterizing optimal point sets determining one distinct triangle
    Brenner, Hazel N.
    Depret-Guillaume, James S.
    Palsson, Eyvindur A.
    Stuckey, Robert
    INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (01): : 91 - 98
  • [3] POINT SETS WITH DISTINCT DISTANCES
    LEFMANN, H
    THIELE, T
    COMBINATORICA, 1995, 15 (03) : 379 - 408
  • [4] A class of point-sets with few k-sets
    Alt, H
    Felsner, S
    Hurtado, F
    Noy, M
    Welzl, E
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2000, 16 (02): : 95 - 101
  • [5] On distinct distances and λ-free point sets
    Dumitrescu, Adrian
    DISCRETE MATHEMATICS, 2008, 308 (24) : 6533 - 6538
  • [6] Few Cuts Meet Many Point Sets
    Sariel Har-Peled
    Mitchell Jones
    Algorithmica, 2023, 85 : 965 - 975
  • [7] Few Cuts Meet Many Point Sets
    Har-Peled, Sariel
    Jones, Mitchell
    ALGORITHMICA, 2023, 85 (04) : 965 - 975
  • [8] Sets with few distinct distances do not have heavy lines
    Raz, Orit E.
    Roche-Newton, Oliver
    Sharir, Micha
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1484 - 1492
  • [9] On Point Sets with Many Unit Distances in Few Directions
    P. Brass
    Discrete & Computational Geometry, 1998, 19 : 355 - 366
  • [10] On point sets with many unit distances in few directions
    Brass, P
    DISCRETE & COMPUTATIONAL GEOMETRY, 1998, 19 (03) : 355 - 366