A kind of sharp Wirtinger inequalities

被引:0
|
作者
Xu, Guiqiao [1 ]
Liu, Yongping [2 ]
Guo, Dandan [2 ]
机构
[1] Tianjin Normal Univ, Sch Math Sci, 393 Extens Bin Shui West Rd, Tianjin 300387, Peoples R China
[2] Beijing Normal Univ, Dept Math, 19 Xinjiekouwai St, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Birkhoff interpolation; Lp-norm; eigenvalue; Wirtinger inequality; Picone inequality;
D O I
10.1142/S0219691323500364
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
where f E W-q(n) [a, b] with at least n zeros (counting multiplicity) in [a, b]. First, based on the Hermite (Lagrange) interpolation, we express f as a Lagrange type (integral type) remainder. Second, we refer the computation of B-n,B-k,B-p,B-8 to the maximum value problem of a multivariate function, and we give the values of B(n,k,p,8)by finding the solution of the multivariate function aforementioned. At last, we refer the computation of Bn,k,p,q(1 = q < 8) to the norm of an integral operator. Our results are corrections and extensions to the results that appear in [J. C. Kuang, Applied Inequalities (Shandong Science and Technology Press, Jinan, 2004); A. Yu. Levin, Some estimates for a diff erentiable function, Dokl. Akad. Nauk SSSR 138 (1961) 37-38 (in Russian)].
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Discrete inequalities of Wirtinger's type for higher differences
    Milovanovic, GV
    Milovanovic, IZ
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 1997, 1 (04): : 301 - 310
  • [32] A note on Wirtinger-Beesack's integral inequalities
    Takahasi, SE
    Miura, T
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (02): : 277 - 282
  • [33] WEIGHTED WIRTINGER AND POINCARE INEQUALITIES ON UNBOUNDED-DOMAINS
    ELCRAT, AR
    MACLEAN, HA
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1980, 29 (03) : 321 - 332
  • [34] Wirtinger type inequalities via fractional integral operators
    Asliyuce, Serkan
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2019, 64 (01): : 35 - 42
  • [35] Wirtinger type inequalities for higher order differentiable functions
    Erden, Samet
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2020, 44 (03) : 656 - 661
  • [36] A sharp weighted Wirtinger inequality and some related functional spaces
    Giova, Raffaella
    Ricciardi, Tonia
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2010, 17 (02) : 209 - 218
  • [37] INTEGRAL INEQUALITIES OF POINCARE AND WIRTINGER TYPE FOR BV FUNCTIONS
    MEYERS, NG
    ZIEMER, WP
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (06) : 1345 - 1360
  • [38] SOME NEW WIRTINGER TYPE INEQUALITIES FOR η-CONVEX FUNCTIONS
    Set, Erhan
    Akdemir, Ahmet Ocak
    Sahin, Eda
    [J]. PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL. 1, 2020, : 368 - 370
  • [39] SOME DYNAMIC WIRTINGER-TYPE INEQUALITIES AND THEIR APPLICATIONS
    Agarwal, Ravi P.
    Bohner, Martin
    O'Regan, Donal
    Saker, Samir H.
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2011, 252 (01) : 1 - 18
  • [40] Sharp Jackson inequalities
    Dai, F.
    Ditzian, Z.
    Tikhonov, S.
    [J]. JOURNAL OF APPROXIMATION THEORY, 2008, 151 (01) : 86 - 112