A Second-Order Singular Perturbation for Model Simplification for a Microgrid

被引:0
|
作者
Yin, Xiao-Qi [1 ]
Yang, Bao-Shun [1 ]
Tao, Jun [1 ]
机构
[1] Anhui Univ, Sch Elect Engn & Automat, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
microgrid; model simplification; second-order singular perturbation; STABILITY ANALYSIS;
D O I
10.3390/en16020584
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As the integration of electronic-interfaced devices have increased, microgrid models have become too complex to perform a stability analysis. Thus, an effective model simplification method keeping most dynamics of the system becomes very essential. Singular perturbation is a common way for model simplification. However, its accuracy is insufficient when nonlinear properties dominate. This is caused by the "Quasi-Steady State Assumption" that traditional singular perturbation holds. By assuming that microgrid can only be stabilized when fast variables stop variating, the traditional method ignores some common phenomena before a stabilization occurs, leading to a loss of dynamics. To improve the accuracy, this paper proposes a "second-order singular perturbation". Here, the traditional "Quasi-Steady State" is updated to a scenario that third-order derivatives of fast variables become zero before the microgrid stabilizes. The updated assumption covers more common phenomena before a stabilization occurs. This leads to a more precise simplification. Simulation results indicate that the proposed method outperforms traditional singular perturbation in accuracy.
引用
收藏
页数:11
相关论文
共 50 条