3D Printing of Customized Drug Delivery Systems with Controlled Architecture via Reversible Addition-Fragmentation Chain Transfer Polymerization

被引:16
|
作者
Bagheri, Ali [1 ]
Asadi-Eydivand, Mitra [2 ]
Rosser, Adam A. [1 ]
Fellows, Christopher M. [1 ]
Brown, Trevor C. [1 ]
机构
[1] Univ New England, Sch Sci & Technol, Armidale, NSW 2351, Australia
[2] Amirkabir Univ Technol, Dept Biomed Engn, Tehran 15914, Iran
关键词
3D CAD models; 3D printing; digital light processing; drug delivery systems; personalized medicine; porous materials; RAFT polymerization; RAFT POLYMERIZATION; RADICAL POLYMERIZATION; LOADED HYDROGELS; OXYGEN-TOLERANT; TRITHIOCARBONATE; TRANSFORMATION; TEMPERATURE; FABRICATION; RADIATION; GELS;
D O I
10.1002/adem.202201785
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
3D printing via reversible addition-fragmentation chain transfer (RAFT) polymerization has been recently developed to expand the scope of 3D printing technologies. A potentially high-impact but relatively unexplored opportunity that can be provided by RAFT-mediated 3D printing is a pathway toward personalized medicine through manufacturing bespoke drug delivery systems (DDSs). Herein, 3D printing of drug-eluting systems with precise geometry, size, drug dosage, and release duration/profiles is reported. This is achieved through engineering a range of 3D models with precise interconnected channel-pore structure and geometric proportions in architectural patterns. Notably, the application of the RAFT process is crucial in manufacturing materials with highly resolved macroscale features by confining curing to exposure precincts. This approach also allows spatiotemporal control of the drug loading and compositions within different layers of the scaffolds. The ratio between the polyethylene glycol units and the acrylate units in the crosslinkers is found to be a critical factor, with a higher ratio increasing swelling capacity, and thus enhancing the drug release profile, from the drug-eluting systems. This proof-of-concept research demonstrates that RAFT-mediated 3D printing enables the production of personalized drug delivery materials, providing a pathway to replace the "one-size-fits-all" approach in traditional health care.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Rational Design of Biopolymers via Aqueous Reversible Addition-Fragmentation Chain Transfer Polymerization
    York, Stacey E.
    York, Adam W.
    McCormick, Charles L.
    POLYMERIC DELIVERY OF THERAPEUTICS, 2010, 1053 : 49 - 63
  • [22] Self-healing of thermoplastics via reversible addition-fragmentation chain transfer polymerization
    Yao, Li
    Rong, Min Zhi
    Zhang, Ming Qiu
    Yuan, Yan Chao
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (25) : 9060 - 9065
  • [23] Synthesis of amphiphilic block copolymers via reversible addition-fragmentation chain transfer polymerization
    Mirkin, Katelin Anne
    Venkataraman, Shrinivas
    Ma, Jun
    Kaplan, David L.
    Wooley, Karen L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [24] Orthogonal Atom Transfer Radical Polymerization and Reversible Addition-Fragmentation Chain Transfer Polymerization for Controlled Polymer Architectures
    Niu, Bing
    Zhang, Li
    Tan, Jianbo
    MACROMOLECULES, 2024, 57 (20) : 9766 - 9778
  • [25] Opportunities for electrochemistry in Reversible Addition-Fragmentation chain-Transfer (RAFT) polymerization systems
    Lorandi, Francesca
    Fantin, Marco
    Shanmugam, Sivaprakash
    Wang, Yi
    Matyjaszewski, Krzysztof
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [26] Poly(3-hexylthiophene) block copolymers via reversible addition-fragmentation chain transfer polymerization
    Kern, Melissa R.
    Bade, Nathan
    Liberatore, Matthew
    Boyes, Stephen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [27] Synthesis of phosphonated copolymers with tailored architecture by reversible addition-fragmentation chain transfer polymerization (RAFT)
    Rixens, B
    Severac, R
    Boutevin, B
    Lacroix-Desmazes, P
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2006, 44 (01) : 13 - 24
  • [28] Reversible Addition-Fragmentation Chain Transfer Polymerization of Vinyl Acetate in Bulk and Suspension Systems
    Oliveira, Marco
    Barbosa, Bernardo S.
    Nele, Marcio
    Pinto, Jose Carlos
    MACROMOLECULAR REACTION ENGINEERING, 2014, 8 (06) : 493 - 502
  • [29] Olefin copolymerization via reversible addition-fragmentation chain transfer
    Venkatesh, R
    Staal, BBP
    Klumperman, B
    CHEMICAL COMMUNICATIONS, 2004, (13) : 1554 - 1555
  • [30] 'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization
    Semsarilar, Mona
    Perrier, Sebastien
    NATURE CHEMISTRY, 2010, 2 (10) : 811 - 820