Small-Constant Uniform Rectifiability

被引:0
|
作者
Jeznach, Cole [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
Uniform rectifiability; Square function estimates; Chord-arc surfaces; FREE-BOUNDARY REGULARITY; CHORD ARC SURFACES; HARMONIC MEASURE; REIFENBERG FLAT; POISSON KERNELS; SPACES; SETS;
D O I
10.1007/s12220-024-01567-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide several equivalent characterizations of locally flat, d-Ahlfors regular, uniformly rectifiable sets E in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}<^>n$$\end{document} with density close to 1 for any dimension d is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \in {\mathbb {N}}$$\end{document}, 1 <= d<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le d < n$$\end{document}. In particular, we show that when E is Reifenberg flat with small constant and has Ahlfors regularity constant close to 1, then the Tolsa alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} coefficients associated to E satisfy a small-constant Carleson measure estimate. This estimate is new, even when d=n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d= n-1$$\end{document}, and gives a new characterization of chord-arc domains with small constant.
引用
收藏
页数:44
相关论文
共 50 条
  • [1] Small-Constant Uniform Rectifiability
    Cole Jeznach
    The Journal of Geometric Analysis, 2024, 34
  • [2] Uniform measures and uniform rectifiability
    Tolsa, Xavier
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2015, 92 : 1 - 18
  • [3] UNIFORM RECTIFIABILITY AND HARMONIC MEASURE, II: POISSON KERNELS IN LP IMPLY UNIFORM RECTIFIABILITY
    Hofmann, Steve
    Maria Martell, Jose
    Uriarte-Tuero, Ignacio
    DUKE MATHEMATICAL JOURNAL, 2014, 163 (08) : 1601 - 1654
  • [4] UNIFORM RECTIFIABILITY AND HARMONIC MEASURE I: UNIFORM RECTIFIABILITY IMPLIES POISSON KERNELS IN Lp
    Hofmann, Steve
    Maria Martell, Jost
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2014, 47 (03): : 577 - 654
  • [5] Poincare inequalities and uniform rectifiability
    Azzam, Jonas
    REVISTA MATEMATICA IBEROAMERICANA, 2021, 37 (06) : 2161 - 2190
  • [6] SQUARE FUNCTIONS AND UNIFORM RECTIFIABILITY
    Chousionis, Vasileios
    Garnett, John
    Le, Triet
    Tolsa, Xavier
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (09) : 6063 - 6102
  • [7] Uniform rectifiability and singular sets
    David, G
    Semmes, S
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1996, 13 (04): : 383 - 443
  • [8] Symmetry theorems and uniform rectifiability
    Lewis, John L.
    Vogel, Andrew L.
    BOUNDARY VALUE PROBLEMS, 2007, 2007 (1)
  • [9] Symmetry Theorems and Uniform Rectifiability
    John L Lewis
    Andrew L Vogel
    Boundary Value Problems, 2007
  • [10] Mass Transport and Uniform Rectifiability
    Tolsa, Xavier
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (02) : 478 - 527