Generalized kinetic equation for tokamak plasma equilibrium distribution function

被引:2
|
作者
Dudkovskaia, A. V. [1 ]
Wilson, H. R. [1 ,2 ]
机构
[1] Univ York, York Plasma Inst, Sch Phys Engn & Technol, York YO10 5DD, England
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
GYROKINETIC EQUATIONS; TRANSPORT; MOMENTUM;
D O I
10.1063/5.0178831
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A generalized kinetic equation for the equilibrium distribution function in a finite beta, arbitrary tokamak plasma is derived. The equation is correct to second order in rho/L (rho is the particle Larmor radius and L is the system size). Resolving the finite Larmor radius length scales with no restriction on the ratio of poloidal to total equilibrium magnetic field, B-theta/B , it generalizes the drift kinetic theory of Hazeltine [Phys. Plasmas 15, 77 (1973)] to the limit of B-theta/B similar to 1 (e.g., to ensure validity for spherical tokamaks). Two cases are considered. The first provides the equilibrium distribution function, consistent with the generalized gyrokinetic formalism of Dudkovskaia et al. [Plasma Phys. Controlled Fusion 65, 045010 (2023)], derived specifically to capture neoclassical equilibrium currents in the gyrokinetic stability analyses in strong gradient regions. The second assumes short length scales in the direction perpendicular to the magnetic field, which can occur as a result of small coherent magnetic structures in the plasma, such as neoclassical tearing mode magnetic islands close to threshold. This then extends the drift island equations of Dudkovskaia et al. [Nucl. Fusion 63, 016020 (2023)] for the plasma response to magnetic islands to a spherical tokamak plasma configuration. Resolving rho similar to rho(theta) (or B-theta similar to B ), where rho(theta) is the particle poloidal Larmor radius, is also expected to influence calculations of the magnetic island propagation frequency and the associated contributions to the island onset conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] THEORY OF IRREVERSIBLE PROCESSES IN PLASMA - DERIVATION OF CONVERGENT KINETIC EQUATION FROM GENERALIZED MASTER EQUATION
    WEINSTOCK, J
    PHYSICAL REVIEW A-GENERAL PHYSICS, 1964, 133 (3A): : A673 - &
  • [32] KINETIC-EQUATION FOR ONE-PARTICLE DISTRIBUTION FUNCTION
    ADKHAMOV, AA
    ODINAEV, S
    UKRAINSKII FIZICHESKII ZHURNAL, 1988, 33 (09): : 1361 - 1367
  • [33] KINETIC EQUATION FOR PLASMA
    WYLD, HW
    PINES, D
    PHYSICAL REVIEW, 1962, 127 (06): : 1851 - &
  • [34] Fractional Integration and Solution of Generalized kinetic equation considering Generalized Lommel-Wright function
    Naheed, Saima
    Mubeen, Shahid
    Rahman, Gauhar
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2021, 53 (09): : 740 - 752
  • [35] NUMERICAL-SIMULATION OF THE PLASMA EQUILIBRIUM IN A TOKAMAK
    BLUM, J
    COMPUTER PHYSICS REPORTS, 1987, 6 (1-6): : 275 - 298
  • [36] Transport barrier as a bifurcation of the equilibrium of a tokamak plasma
    V. I. Ilgisonis
    Yu. I. Pozdnyakov
    Plasma Physics Reports, 2002, 28 : 83 - 93
  • [37] Tokamak plasma equilibrium with relativistic runaway electrons
    Bandaru, V.
    Hoelzl, M.
    PHYSICS OF PLASMAS, 2023, 30 (09)
  • [38] Plasma equilibrium reconstructions in the lithium tokamak experiment
    Hopkins, L. Berzak
    Menard, J.
    Majeski, R.
    Lundberg, D. P.
    Granstedt, E.
    Jacobson, C.
    Kaita, R.
    Kozub, T.
    Zakharov, L.
    NUCLEAR FUSION, 2012, 52 (06)
  • [39] CHARACTERIZATION OF THE TOKAMAK DEVARENNES OHMIC PLASMA IN EQUILIBRIUM
    BOILEAU, A
    GREGORY, BC
    ABEL, G
    BELANGER, C
    BOUCHER, C
    COUTURE, P
    DECOSTE, R
    HADDAD, E
    JANICKI, C
    KALNAVARNS, J
    LACHAMBRE, JL
    LAFRANCE, D
    LECLAIR, G
    MACLATCHY, C
    PACHER, GW
    PACHER, HD
    RATEL, G
    RICHARD, N
    SAINTONGE, M
    SIMM, C
    STANSFIELD, BL
    WHYTE, D
    ZUZAK, W
    ROGISTER, A
    HASSELBERG, G
    CANADIAN JOURNAL OF PHYSICS, 1990, 68 (12) : 1353 - 1358
  • [40] Numerical simulation of tokamak plasma equilibrium evolution
    Gros, G.
    Faugeras, B.
    Boulbe, C.
    Artaud, J. -f.
    Nouailletas, R.
    Rapetti, F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 529