Review of Carbon Nanotube Field Effect Transistor for Nanoscale Regime

被引:4
|
作者
Maqbool, Mehwish [1 ]
Sharma, Vijay Kumar [1 ]
机构
[1] Shri Mata Vaishno Devi Univ, Sch Elect & Commun Engn, Katra 182320, India
关键词
Nanoelectronics; CNTFET; SCE; MOSFET; TFA; carbon nanotube; MULTIPLE-VALUED LOGIC; TERNARY FULL ADDER; HIGH-PERFORMANCE; CNTFET; DESIGN; POWER; VOLTAGE; MODEL; SPEED; FET;
D O I
10.2174/1573413719666230510101913
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The need for high performance, small size, low delay, low power consumption, and long battery backup of portable systems is increasing with the advancement of technology. Many features of portable systems can be improved using scaling methods. In the scaling process, reducing the size of devices causes serious difficulties, including the short channel effect (SCE) and leakage current, which degenerates the characteristics of the systems.Objectives: In this review paper, a trending carbon nanotube field effect transistor (CNTFET) technology is discussed in detail. CNTFET can replace the conventional metal oxide semiconductor field effect transistor (MOSFET) technology to overcome the SCE problems in the nanoscale regime and also meet the requirements of portable systems.Methods: The CNTFET is an extremely good nanoscale technology due to its one-dimension band structure, high transconductance, high electron mobility, superior control over channel formation, and better threshold voltage. This technology is used to construct high-performance and low-power circuits by replacing the MOSFET technology. CNTFET in comparison to MOSFET takes the carbon nanotube (CNT) as a channel region.Results: The value of threshold voltage in CNTFET changes with the diameter of CNT. The threshold voltage of the devices controls many parameters at the circuit-level design. Hence, the detailed operation and the characteristics of CNTFET devices are presented in this review paper. The existing CNTFET-based ternary full adder (TFA) circuits are also described in this review paper for the performance evaluation of different parameters.Conclusion: CNTFET technology is the possible solution for the SCE in the nanoscale regime and is capable to design efficient logic circuits. The circuits using the CNTFET technology can provide better performance and various advantages, including fast speed, small area, and low power consumption, in comparison to the MOSFET circuits. Thus, CNTFET technology is the best choice for circuit designs at the nanoscale.
引用
收藏
页码:459 / 470
页数:12
相关论文
共 50 条
  • [21] Carbon nanotube field-effect transistor for GHZ operation
    Bethoux, J. -M.
    Happy, H.
    Dambrine, G.
    Borghetti, J.
    Derycke, V.
    Goffman, M.
    Bourgoin, J. -P.
    ESSDERC 2006: PROCEEDINGS OF THE 36TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2006, : 206 - +
  • [22] Protein sensor using carbon nanotube field effect transistor
    Kojima, A
    Hyon, CK
    Kamimura, T
    Maeda, M
    Matsumoto, K
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2005, 44 (4A): : 1596 - 1598
  • [23] Carbon Nanotube Field effect Transistor Models Performance and Evaluation
    Al-Shaggah, Atheer
    Rjoub, Abdoul
    Khasawneh, Mohammed
    2013 IEEE JORDAN CONFERENCE ON APPLIED ELECTRICAL ENGINEERING AND COMPUTING TECHNOLOGIES (AEECT), 2013,
  • [24] Carbon Nanotube Field-Effect Transistor for DNA Sensing
    Chu T. Xuan
    Nguyen T. Thuy
    Tran T. Luyen
    Tran T. T. Huyen
    Mai A. Tuan
    Journal of Electronic Materials, 2017, 46 : 3507 - 3511
  • [25] Modeling of carbon nanotube field effect transistor with phonon scattering
    Zhao Xiao-Hui
    Cai Li
    Zhang Peng
    ACTA PHYSICA SINICA, 2013, 62 (10)
  • [26] Carbon nanotube field-effect-transistor-based biosensors
    Allen, Brett Lee
    Kichambare, Padmakar D.
    Star, Alexander
    ADVANCED MATERIALS, 2007, 19 (11) : 1439 - 1451
  • [27] Shot noise of a multiwalled carbon nanotube field effect transistor
    Wu, Fan
    Tsuneta, Taku
    Tarkiainen, Reeta
    Gunnarsson, David
    Wang, Tai-Hong
    Hakonen, Pertti J.
    PHYSICAL REVIEW B, 2007, 75 (12):
  • [28] Nanoscale characterization of carbon nanotube field-effect transistors
    Freitag, M
    Johnson, AT
    STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES, 2002, 633 : 513 - 516
  • [29] Characteristics of a carbon nanotube field-effect transistor analyzed as a ballistic nanowire field-effect transistor
    Natori, K
    Kimura, Y
    Shimizu, T
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (03)
  • [30] Physics-Integrated Machine Learning for Efficient Design and Optimization of a Nanoscale Carbon Nanotube Field-Effect Transistor
    Fan, Guangxi
    Low, Kain Lu
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2023, 12 (09)