The Aristotelian Proof Revisited: A Reflection

被引:0
|
作者
McNabb, Tyler [1 ]
机构
[1] St Francis Univ, Franciscan Studies Theol & Appl Eth, Loretto, PA 15940 USA
关键词
Aristotle; Feser; Oppy; pure act; the First Way; unmoved mover;
D O I
10.1017/nbf.2023.7
中图分类号
B9 [宗教];
学科分类号
010107 ;
摘要
McNabb and DeVito have recently argued that Graham Oppy's objections to the First Way are found wanting. In response, McNabb and DeVito restructured the First Way on behalf of St Thomas. More recently, Joseph Schmid and Daniel Linford argue that the restructured argument given by McNabb and DeVito is problematic, claiming that it is either valid but unmotivated or it is plainly invalid. In this paper, I argue that McNabb and DeVito's schematic glossing of the First Way is both valid and motivated.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 50 条
  • [31] The Lambert diffuse reflection model revisited
    Svensson, U. Peter
    Savioja, Lauri
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 156 (06): : 3788 - 3796
  • [32] MacIntyre's Revolutionary Aristotelian Philosophy and his Idea of an Educated Public Revisited
    Macallister, James
    JOURNAL OF PHILOSOPHY OF EDUCATION, 2016, 50 (04) : 524 - 537
  • [33] The proof of the Gibbard-Satterthwaite theorem revisited
    Svensson, Lars-Gunnar
    Reffgen, Alexander
    JOURNAL OF MATHEMATICAL ECONOMICS, 2014, 55 : 11 - 14
  • [34] Hash Proof Systems over Lattices Revisited
    Benhamouda, Fabrice
    Blazy, Olivier
    Ducas, Leo
    Quach, Willy
    PUBLIC-KEY CRYPTOGRAPHY - PKC 2018, PT II, 2018, 10770 : 644 - 674
  • [35] SIC REVISITED - STANDARD OF PROOF IN JUVENILE CASES
    WILLIS, B
    BAYLOR LAW REVIEW, 1977, 29 (02) : 343 - 356
  • [36] ALPHA-COLUBRINE REVISITED (PROOF OF STRUCTURE)
    CULVER, JM
    SAINSBURY, M
    JOURNAL OF CHEMICAL RESEARCH-S, 1987, (09): : 304 - 305
  • [37] Krahn’s proof of the Rayleigh conjecture revisited
    Daniel Daners
    Archiv der Mathematik, 2011, 96 : 187 - 199
  • [38] PROOF FROM THE PERI-IDEON REVISITED
    BARFORD, R
    PHRONESIS-A JOURNAL FOR ANCIENT PHILOSOPHY, 1976, 21 (03): : 198 - 218
  • [39] GEISSOSCHIZINE REVISITED - DEFINITE PROOF OF ITS STEREOSTRUCTURE
    TAKAYAMA, H
    WATANABE, T
    SEKI, H
    AIMI, N
    SAKAI, S
    TETRAHEDRON LETTERS, 1992, 33 (45) : 6831 - 6834
  • [40] Hahn-Mazurkiewicz revisited:: A new proof
    Arenas, FG
    Sánchez-Granero, MA
    HOUSTON JOURNAL OF MATHEMATICS, 2002, 28 (04): : 753 - 769