A QUADRATICALLY CONVERGENT ALGORITHM FOR INVERSE EIGENVALUE PROBLEMS

被引:0
|
作者
Luo, Yusong [1 ]
Shen, Weiping [1 ]
Luo, Enping [2 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Coll Phys & Elect Informat Engn, Jinhua 321004, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Inverse eigenvalue problem; Ulm's method; quadratic convergence; CAYLEY TRANSFORM METHOD; NUMERICAL-METHODS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by Kensuke Aishima's algorithm and Ulm's method, we propose a quadratically convergent algorithm for solving inverse eigenvalue problems. Compared with some existing algorithms, the proposed algorithm avoids solving (approximate) Jacobian equations and the Cayley transform. Thus, it seems more stable and needs less calculations. A quadratic convergence result is established under the condition that the relative generalized Jacobian matrix is nonsingular. Moreover, some numerical examples are given in the last section and comparisons with some known algorithms are made.
引用
收藏
页码:2309 / 2328
页数:20
相关论文
共 50 条
  • [21] A QUADRATICALLY CONVERGENT PROXIMAL ALGORITHM FOR NONNEGATIVE TENSOR DECOMPOSITION
    Vervliet, Nico
    Themelis, Andreas
    Patrinos, Panagiotis
    De Lathauwer, Lieven
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1020 - 1024
  • [22] Super-Exponentially Convergent Parallel Algorithm for Eigenvalue Problems with Fractional Derivatives
    Demkiv, Ihor
    Gavrilyuk, Ivan P.
    Makarov, Volodymyr L.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2016, 16 (04) : 633 - 652
  • [23] Super-exponentially Convergent Parallel Algorithm for Eigenvalue Problems in Hilbert Spaces
    Gavrilyuk, I.
    Makarov, V.
    DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS (DETA 2009), 2009, : 86 - 91
  • [24] DISCONTINUOUS INVERSE EIGENVALUE PROBLEMS
    HALD, OH
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (05) : 539 - 577
  • [25] Inverse Problems on the Least Eigenvalue
    Jie Yang
    Chuan-Fu Yang
    Results in Mathematics, 2014, 65 : 321 - 332
  • [26] On matrix inverse eigenvalue problems
    Ji, XZ
    INVERSE PROBLEMS, 1998, 14 (02) : 275 - 285
  • [27] UNIQUENESS OF INVERSE EIGENVALUE PROBLEMS
    BARCILON, V
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1974, 38 (02): : 287 - 298
  • [28] INVERSE EIGENVALUE PROBLEMS FOR THE MANTLE
    HALD, OH
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1980, 62 (01): : 41 - 48
  • [29] ALGORITHMS FOR INVERSE EIGENVALUE PROBLEMS
    LI, RC
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1992, 10 (02): : 97 - 111
  • [30] On matrix inverse eigenvalue problems
    Inverse Probl, 2 (275-285):