Measurability, spectral densities, and hypertraces in noncommutative geometry

被引:1
|
作者
Cipriani, Fabio E. G. [1 ]
Sauvageot, Jean-Luc [2 ,3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Paris Cite, F-75013 Paris, France
[3] Sorbonne Univ, CNRS, IMJ PRG, F-75013 Paris, France
关键词
Spectral triple; asymptotics of the counting function; spectral density; volume form; hypertrace; EXISTENCE;
D O I
10.4171/JNCG/511
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce, in the dual Macaev ideal of compact operators of a Hilbert space, the spectral weight rho(L) of a positive, self-adjoint operator L having discrete spectrum away from zero. We provide criteria for its measurability and unitarity of its Dixmier traces (rho(L) is then called spectral density) in terms of the growth of the spectral multiplicities of L or in terms of the asymptotic continuity of the eigenvalue counting function N-L. Existence of meromorphic extensions and residues of the zeta-function zeta(L) of a spectral density are provided under summability conditions on spectral multiplicities. The hypertrace property of the states Omega(L)(.) = Tr-omega(.rho(L)) on the norm closure of the Lipschitz algebra A(L) follows if the relative multiplicities of L vanish faster than its spectral gaps or if N-L is asymptotically regular.
引用
收藏
页码:1437 / 1468
页数:32
相关论文
共 50 条
  • [41] Noncommutative geometry and cosmology
    Barbosa, GD
    Pinto-Neto, N
    PHYSICAL REVIEW D, 2004, 70 (10): : 103512 - 1
  • [42] The geometry of noncommutative symmetries
    Paschke, M
    Sitarz, A
    ACTA PHYSICA POLONICA B, 2000, 31 (09): : 1897 - 1911
  • [43] Noncommutative double geometry
    Kodzoman, Toni
    Lescano, Eric
    PHYSICAL REVIEW D, 2024, 109 (04)
  • [44] Noncommutative geometry as a functor
    Nikolaev, Igor V.
    OPERATOR STRUCTURES AND DYNAMICAL SYSTEMS, 2009, 503 : 151 - 157
  • [45] Noncommutative Geometry and Analysis
    Sergeev A.G.
    Journal of Mathematical Sciences, 2019, 236 (6) : 641 - 662
  • [46] NONCOMMUTATIVE DIFFERENTIAL GEOMETRY
    CONNES, A
    PUBLICATIONS MATHEMATIQUES, 1985, (62): : 257 - 360
  • [47] Stratified Noncommutative Geometry
    Ayala, David
    Mazel-Gee, Aaron
    Rozenblyum, Nick
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 297 (1485) : 1485
  • [48] Seesaw and noncommutative geometry
    Jureit, Jan-H.
    Krajewski, Thomas
    Schuecker, Thomas
    Stephan, Christoph A.
    PHYSICS LETTERS B, 2007, 654 (3-4) : 127 - 132
  • [49] Noncommutative geometry and physics
    Connes, Alain
    Albert Einstein Century International Conference, 2006, 861 : 47 - 69
  • [50] Supergravity on the noncommutative geometry
    Shimojo, Masafumi
    Ishihara, Satoshi
    Kataoka, Hironobu
    Matsukawa, Atsuko
    Sato, Hikaru
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2017, 2017 (02):