Measurability, spectral densities, and hypertraces in noncommutative geometry

被引:1
|
作者
Cipriani, Fabio E. G. [1 ]
Sauvageot, Jean-Luc [2 ,3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Paris Cite, F-75013 Paris, France
[3] Sorbonne Univ, CNRS, IMJ PRG, F-75013 Paris, France
关键词
Spectral triple; asymptotics of the counting function; spectral density; volume form; hypertrace; EXISTENCE;
D O I
10.4171/JNCG/511
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce, in the dual Macaev ideal of compact operators of a Hilbert space, the spectral weight rho(L) of a positive, self-adjoint operator L having discrete spectrum away from zero. We provide criteria for its measurability and unitarity of its Dixmier traces (rho(L) is then called spectral density) in terms of the growth of the spectral multiplicities of L or in terms of the asymptotic continuity of the eigenvalue counting function N-L. Existence of meromorphic extensions and residues of the zeta-function zeta(L) of a spectral density are provided under summability conditions on spectral multiplicities. The hypertrace property of the states Omega(L)(.) = Tr-omega(.rho(L)) on the norm closure of the Lipschitz algebra A(L) follows if the relative multiplicities of L vanish faster than its spectral gaps or if N-L is asymptotically regular.
引用
收藏
页码:1437 / 1468
页数:32
相关论文
共 50 条
  • [1] Spectral noncommutative geometry and quantization
    Rovelli, C
    PHYSICAL REVIEW LETTERS, 1999, 83 (06) : 1079 - 1083
  • [2] Noncommutative geometry: The spectral aspect
    Connes, A
    QUANTUM SYMMETRIES: LXIVTH SESSION OF THE LES HOUCHES SUMMER SCHOOL, 1998, : 643 - 686
  • [3] GEOMETRY OF NONCOMMUTATIVE SPECTRAL THEORY
    ALFSEN, EM
    SCHULTZ, FW
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (05) : 893 - 895
  • [4] Noncommutative spectral geometry: a short review
    Sakellariadou, Mairi
    6TH INTERNATIONAL WORKSHOP DICE2012 SPACETIME - MATTER - QUANTUM MECHANICS: FROM THE PLANCK SCALE TO EMERGENT PHENOMENA, 2013, 442
  • [5] Noncommutative spectral geometry of Riemannian foliations
    Kordyukov, YA
    MANUSCRIPTA MATHEMATICA, 1997, 94 (01) : 45 - 73
  • [6] Linear stability of noncommutative spectral geometry
    Sakellariadou, M.
    Watcharangkool, A.
    PHYSICAL REVIEW D, 2016, 93 (06)
  • [7] Noncommutative spectral geometry of riemannian foliations
    Yuri A. Kordyukov
    manuscripta mathematica, 1997, 94 : 45 - 73
  • [8] Spectral action in noncommutative geometry: An example
    Iochum, B.
    INTERNATIONAL CONFERENCE ON NONCOMMUTATIVE GEOMETRY AND PHYSICS, 2008, 103
  • [9] Gravitational waves in the spectral action of noncommutative geometry
    Nelson, William
    Ochoa, Joseph
    Sakellariadou, Mairi
    PHYSICAL REVIEW D, 2010, 82 (08):
  • [10] Spectral Truncations in Noncommutative Geometry and Operator Systems
    Connes, Alain
    van Suijlekom, Walter D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (03) : 2021 - 2067