Unsupervised Domain Adaptation Method Based on Domain-Invariant Features Evaluation and Knowledge Distillation for Bearing Fault Diagnosis

被引:0
|
作者
Sun, Kong [1 ]
Bo, Lin [1 ]
Ran, Haoting [1 ]
Tang, Zhi [1 ]
Bi, Yuanliang [1 ]
机构
[1] Chongqing Univ, State Key Lab Mech Transmiss, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Domain-invariant features; fault diagnosis; knowledge distillation (KD); pseudo-labels; soft attention mechanism (SAM);
D O I
10.1109/TIM.2023.3318747
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Numerous unsupervised domain adaptation (UDA) methods for bearing fault diagnosis rely on extracting domain-invariant features to mitigate the impact of domain shift interference. However, the lack of evaluation criteria results in limited interpretability of domain-invariant features. Additionally, current pseudo-label prediction methods heavily rely on label information or computational resources, and the traditional Softmax function fails to capture valuable information. To address these problems, this article proposes a UDA method based on domain-invariant features evaluation and knowledge distillation (KD) for bearing fault diagnosis. First, mutual information and soft attention mechanism are integrated into the extraction of multivariate features to access the quality of domain-invariant features and enhance interpretability. Then, the concept of KD is introduced to predict pseudo-labels in the target domain without relying on label information or computational resources. Furthermore, an asynchronous feature metric adaptive strategy is developed to adjust the feature alignment metric, considering the maturity and precision of pseudo-labels. The effectiveness and superiority of the proposed method are demonstrated through comparative experiments and ablation studies on two bearing datasets.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Entropy-Optimized Fault Diagnosis Based on Unsupervised Domain Adaptation
    Liu, Fuqiang
    Chen, Yandan
    Deng, Wenlong
    Zhou, Mingliang
    MATHEMATICS, 2023, 11 (09)
  • [32] Unsupervised domain adaptation via enhanced transfer joint matching for bearing fault diagnosis
    Zhang, Zhongwei
    Chen, Huaihai
    Li, Shunming
    An, Zenghui
    MEASUREMENT, 2020, 165 (165)
  • [33] Simulation Data-driven Enhanced Unsupervised Domain Adaptation for Bearing Fault Diagnosis
    Shao H.
    Xiao Y.
    Yan S.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (03): : 76 - 85
  • [34] A novel bearing fault diagnosis method based joint attention adversarial domain adaptation
    Chen, Pengfei
    Zhao, Rongzhen
    He, Tianjing
    Wei, Kongyuan
    Yuan, Jianhui
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 237
  • [35] Trackside Acoustic Fault Diagnosis of Bearing Based on Doppler Knowledge Embedded in Domain Adaptation Network
    Zhang, Yupeng
    Hua, Juntao
    Fang, Xia
    Zhang, Heng
    He, Jiayuan
    Miao, Qiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 13
  • [36] Fault diagnosis of rolling bearings under variable conditions based on unsupervised domain adaptation method
    Zhong, Jianhua
    Lin, Cong
    Gao, Yang
    Zhong, Jianfeng
    Zhong, Shuncong
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2024, 215
  • [37] An Unsupervised Domain Adaptation Method for Intelligent Bearing Fault Diagnosis Based on Signal Reconstruction by Cycle-Consistent Adversarial Learning
    Zhu, Wenying
    Shi, Boqiang
    Feng, Zhipeng
    Tang, Jiachen
    IEEE SENSORS JOURNAL, 2023, 23 (16) : 18477 - 18485
  • [38] Multiple Source-Free Domain Adaptation Network Based on Knowledge Distillation for Machinery Fault Diagnosis
    Yue, Ke
    Li, Jipu
    Chen, Zhuyun
    Huang, Ruyi
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [39] Unsupervised Person Re-identification Based on Clustering and Domain-Invariant Network
    Huang, Yangru
    Jin, Yi
    Peng, Peixi
    Lang, Congyan
    Li, Yidong
    IMAGE AND GRAPHICS, ICIG 2019, PT III, 2019, 11903 : 517 - 528
  • [40] Unsupervised domain adaptation for lip reading based on cross-modal knowledge distillation
    Takashima, Yuki
    Takashima, Ryoichi
    Tsunoda, Ryota
    Aihara, Ryo
    Takiguchi, Tetsuya
    Ariki, Yasuo
    Motoyama, Nobuaki
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2021, 2021 (01)