Comparing Machine Learning Classifiers for Predicting Hospital Readmission of Heart Failure Patients in Rwanda

被引:1
|
作者
Rizinde, Theogene [1 ]
Ngaruye, Innocent [2 ]
Cahill, Nathan D. [3 ]
机构
[1] Univ Rwanda, Coll Business & Econ, Kigali 4285, Rwanda
[2] Univ Rwanda, Coll Sci & Technol, Kigali 4285, Rwanda
[3] Rochester Inst Technol, Sch Math & Stat, Rochester, NY 14623 USA
来源
JOURNAL OF PERSONALIZED MEDICINE | 2023年 / 13卷 / 09期
关键词
HF; hospital readmission; ML algorithm; Rwanda; DISEASE;
D O I
10.3390/jpm13091393
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
High rates of hospital readmission and the cost of treating heart failure (HF) are significant public health issues globally and in Rwanda. Using machine learning (ML) to predict which patients are at high risk for HF hospital readmission 20 days after their discharge has the potential to improve HF management by enabling early interventions and individualized treatment approaches. In this paper, we compared six different ML models for this task, including multi-layer perceptron (MLP), K-nearest neighbors (KNN), logistic regression (LR), decision trees (DT), random forests (RF), and support vector machines (SVM) with both linear and radial basis kernels. The outputs of the classifiers are compared using performance metrics including the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. We found that RF outperforms all the remaining models with an AUC of 94% while SVM, MLP, and KNN all yield 88% AUC. In contrast, DT performs poorly, with an AUC value of 57%. Hence, hospitals in Rwanda can benefit from using the RF classifier to determine which HF patients are at high risk of hospital readmission.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [21] An Interpretable Machine Learning Approach for Predicting Hospital Length of Stay and Readmission
    Liu, Yuxi
    Qin, Shaowen
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2021, PT I, 2022, 13087 : 73 - 85
  • [22] Comparison of machine learning and conventional statistical modeling for predicting readmission following acute heart failure hospitalization
    Abdul-Samad, Karem
    Ma, Shihao
    Austin, David E.
    Chong, Alice
    Wang, Chloe X.
    Wang, Xuesong
    Austin, Peter C.
    Ross, Heather J.
    Wang, Bo
    Lee, Douglas S.
    AMERICAN HEART JOURNAL, 2024, 277 : 93 - 103
  • [23] Application of machine learning in predicting frailty syndrome in patients with heart failure
    Szczepanowski, Remigiusz
    Uchmanowicz, Izabella
    Pasieczna-Dixit, Aleksandra H.
    Sobecki, Janusz
    Katarzyniak, Radoslaw
    Kolaczek, Grzegorz
    Lorkiewicz, Wojciech
    Kedras, Maja
    Dixit, Anant
    Biegus, Jan
    Wleklik, Marta
    Gobbens, Robbert J. J.
    Hill, Loreena
    Jaarsma, Tiny
    Hussain, Amir
    Barbagallo, Mario
    Veronese, Nicola
    Morabito, Francesco C.
    Kahsin, Aleksander
    ADVANCES IN CLINICAL AND EXPERIMENTAL MEDICINE, 2024, 33 (03): : 309 - 315
  • [24] Machine learning modeling for predicting hospital readmission following lumbar laminectomy
    Kalagara, Saisanjana
    Eltorai, Adam E. M.
    Durand, Wesley M.
    DePasse, J. Mason
    Daniels, Alan H.
    JOURNAL OF NEUROSURGERY-SPINE, 2019, 30 (03) : 344 - 352
  • [25] Predictive modelling of hospital readmission: Evaluation of different preprocessing techniques on machine learning classifiers
    Miswan, Nor Hamizah
    Chan, Chee Seng
    Ng, Chong Guan
    INTELLIGENT DATA ANALYSIS, 2021, 25 (05) : 1073 - 1098
  • [26] PREDICTING IN-HOSPITAL CLINICAL TRAJECTORIES USING MACHINE LEARNING IN PATIENTS ADMITTED WITH ACUTE DECOMPENSATED HEART FAILURE
    Liao, Ruizhi
    Beskin, Claire
    Harzand, Arash
    Lin, Grace
    Joseph, Jacob
    Bozkurt, Biykem
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 2303 - 2303
  • [27] Predicting the Readmission of Heart Failure Patients through Data Analytics
    Sohrabi, Babak
    Vanani, Iman Raeesi
    Gooyavar, Amirsahand
    Naderi, Nasim
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2019, 18 (01)
  • [28] Comparison of Hospital Performance on Readmission and Mortality for Heart Failure Patients
    Keenan, Patricia S.
    Chen, Jersey
    Ross, Joseph S.
    Drye, Elizabeth
    Lin, Zhenqiu
    Wang, Yun
    Normand, Sharon-Lise T.
    Krumholz, Harlan M.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2009, 53 (10) : A396 - A396
  • [29] GROUPING OF PATIENTS ON RELATION TO HOSPITAL READMISSION BY ACUTE HEART FAILURE
    Quintana, J. M.
    Anton-Ladislao, A.
    Garcia-Gutierrez, S.
    Lafuente, I.
    Morillas, M. J.
    Hernandez, E.
    Rilo, I.
    Murga, N.
    Quiros, R.
    CARDIOLOGY, 2016, 134 : 64 - 64
  • [30] Length of hospital stay and readmission rates in heart failure patients
    Watkins, S.
    Young, C.
    McCandless, E. A.
    Dargie, H. J.
    EUROPEAN HEART JOURNAL, 2005, 26 : 281 - 282