Experimental realization of Airy beams on incoherent background

被引:2
|
作者
Chen, Qian [1 ,2 ,3 ]
Hajati, Morteza [4 ]
Liu, Xin [1 ,2 ,3 ]
Cai, Yangjian [1 ,2 ,3 ,5 ]
Ponomarenko, Sergey A. [4 ,6 ]
Liang, Chunhao [1 ,2 ,3 ]
机构
[1] Shandong Normal Univ, Shandong Prov Engn & Tech Ctr Light Manipulat, Jinan 250358, Peoples R China
[2] Shandong Normal Univ, Sch Phys & Elect, Shandong Prov Key Lab Opt & Photon Device, Jinan 250014, Peoples R China
[3] Shandong Normal Univ, Collaborat Innovat Ctr Light Manipulat & Applicat, Jinan 250358, Peoples R China
[4] Dalhousie Univ, Dept Elect & Comp Engn, Halifax, NS B3J 2X4, Canada
[5] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[6] Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS B3H 4R2, Canada
来源
OPTICS AND LASER TECHNOLOGY | 2024年 / 169卷
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会; 中国博士后科学基金;
关键词
Airy beam; Structured random light; Self-healing; Non-diffraction; PARTIALLY COHERENT BEAMS; SCHELL-MODEL BEAMS; VORTEX BEAMS; PROPAGATION; GENERATION; DARK;
D O I
10.1016/j.optlastec.2023.110020
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report an experimental realization of recently introduced Airy beams on incoherent background (ABIBs). The ABIBs are structured random beams that defy diffraction in free space, making them attractive to free -space optical communications, information transfer and imaging. We demonstrate here that the (truncated) laboratory realizations of ABIBs are more resilient to diffraction and far more capable of self-healing after having been obstructed by defects than are truncated coherent Airy beams of the same width of the main lobe and truncation length. The combination of remarkable propagation invariance and self-healing potential of ABIBs carries promise for their applications to optical communications in randomly inhomogeneous environments and biological tissue imaging.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Quantitative study on propagation and healing of Airy beams under experimental conditions
    Zhuang, Fei
    Zhu, Ziyi
    Margiewicz, Jessica
    Shi, Zhimin
    OPTICS LETTERS, 2015, 40 (05) : 780 - 783
  • [22] Symmetric Airy vortex and symmetric Airy vector beams
    Fu, Wenxing
    Zhou, Yaqin
    Yuan, Yide
    Lin, Tiegang
    Zhou, Yingjie
    Zeng, Tibing
    Huang, Huihui
    Fan, Fan
    Wen, Shuangchun
    LIQUID CRYSTALS, 2021, 48 (04) : 484 - 490
  • [23] Experimental study on the propagation characteristics of ring Airy Gaussian vortex beams
    Chen, Musheng
    Huang, Sujuan
    Shao, Wei
    Liu, Xianpeng
    APPLIED PHYSICS B-LASERS AND OPTICS, 2017, 123 (08):
  • [24] Generation of coherent and incoherent Airy beam arrays and experimental comparisons of their scintillation characteristics in atmospheric turbulence
    Lu, Qiang
    Gao, Shijie
    Sheng, Lei
    Wu, Jiabin
    Qiao, Yanfeng
    APPLIED OPTICS, 2017, 56 (13) : 3750 - 3757
  • [25] Generation of electron Airy beams
    Voloch-Bloch, Noa
    Lereah, Yossi
    Lilach, Yigal
    Gover, Avraham
    Arie, Ady
    NATURE, 2013, 494 (7437) : 331 - 335
  • [26] Optical airy beams and bullets
    Christodoulides, D.
    Wengerowsky, S.
    Rao, S. M.
    FRONTIERS IN MODERN OPTICS, 2016, 190 : 103 - 121
  • [27] Momentum of optical Airy beams
    Sztul, Henry I.
    Alfano, Robert R.
    COMPLEX LIGHT AND OPTICAL FORCES III, 2009, 7227
  • [28] The Gouy phase of Airy beams
    Pang, Xiaoyan
    Gbur, Greg
    Visser, Taco D.
    OPTICS LETTERS, 2011, 36 (13) : 2492 - 2494
  • [29] Super-Airy beams
    Abdou, Aly
    OPTICS EXPRESS, 2023, 31 (24) : 39447 - 39453
  • [30] Stationary nonlinear Airy beams
    Lotti, A.
    Faccio, D.
    Couairon, A.
    Papazoglou, D. G.
    Panagiotopoulos, P.
    Abdollahpour, D.
    Tzortzakis, S.
    PHYSICAL REVIEW A, 2011, 84 (02):