Transcendental solutions of Fermat-type functional equations in Cn

被引:0
|
作者
Ahamed, Molla Basir [1 ]
Allu, Vasudevarao [2 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata 700032, West Bengal, India
[2] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Bhubaneswar 752050, Odisha, India
关键词
Transcendental meromorphic solutions; Nevanlinna theory; Several complex variables; Fermat-type functional equations in C-n; 2ND MAIN THEOREM; MEROMORPHIC FUNCTIONS; DIFFERENCE-EQUATIONS; VERSION;
D O I
10.1007/s13324-023-00828-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The equation f(n) + g(n) = 1 can be interpreted as the Fermat Diophantine equation x(n) + y(n )= 1 within the function field when n is a positive integer. This study employs Nevanlinna theory for several complex variables to explore transcendental solutions of Fermat-type functional equations with polynomial coefficients in Cn. If the coefficients of the equation are transcendental functions and satisfy a certain relationship, we show that transcendental solutions can be obtained. Moreover, we determine the precise form of the solutions in both cases.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Diminished Fermat-type arrangements and unexpected curves
    Kabat, Jakub
    Strycharz-Szemberg, Beata
    COMPTES RENDUS MATHEMATIQUE, 2020, 358 (05) : 603 - 608
  • [42] SOLVING FERMAT-TYPE EQUATIONS x5 + y5 = dzp
    Billerey, Nicolas
    Dieulefait, Luis V.
    MATHEMATICS OF COMPUTATION, 2010, 79 (269) : 535 - 544
  • [43] On Codimension Two Flats in Fermat-Type Arrangements
    Malara, Grzegorz
    Szpond, Justyna
    MULTIGRADED ALGEBRA AND APPLICATIONS, 2018, 238 : 95 - 109
  • [44] Restrictions on meromorphic solutions of Fermat type equations
    Gundersen, Gary G.
    Ishizaki, Katsuya
    Kimura, Naofumi
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2020, 63 (03) : 654 - 665
  • [45] On Meromorphic Solutions of the Fermat Type Difference Equations
    Qi, Xiaoguang
    Yang, Lianzhong
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (03)
  • [46] Entire Solutions of the Second-Order Fermat-Type Differential-Difference Equation
    Dang, Guoqiang
    Cai, Jinhua
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [47] Transcendental Solutions of a Class of Minimal Functional Equations
    Coons, Michael
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (02): : 283 - 291
  • [48] Solving Fermat-type equations via modular Q-curves over polyquadratic fields
    Dieulefait, Luis
    Jimenez Urroz, Jorge
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 633 : 183 - 195
  • [49] On Fermat-Type Binomial Equations Involving Differential Difference Form in Higher Dimensional Complex Plane
    Haldar, Goutam
    Banerjee, Abhijit
    IRANIAN JOURNAL OF SCIENCE, 2024, 48 (06) : 1529 - 1540
  • [50] Constructal comment on a Fermat-type principle for heat flow
    Bejan, A
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (10) : 1885 - 1886