H-eigenvalue Inclusion Sets for Sparse Tensors

被引:0
|
作者
Wang, Gang [1 ]
Feng, Xiuyun [1 ]
机构
[1] Qufu Normal Univ, Sch Management Sci, Yantai Rd 80, Rizhao 276800, Shandong, Peoples R China
关键词
Sparse tensors; H-eigenvalue inclusion sets; Positive definiteness; H-spectral radius; PERRON-FROBENIUS THEOREM;
D O I
10.1007/s40840-023-01560-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Sparse tensors play fundamental roles in hypergraph data, sensor node network data and remote sensing data. In this paper, we establish new H-eigenvalue inclusion sets for sparse tensors by their majorization matrix's digraph and representation matrix's digraph. Numerical examples are proposed to verify that our conclusions are more accurate and less computations than existing results. As applications, we provide some checkable sufficient conditions for the positive definiteness of even-order sparse tensors, and propose lower and upper bounds of H-spectral radius of nonnegative sparse tensors.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Two S-type Z-eigenvalue inclusion sets for tensors
    Yanan Wang
    Gang Wang
    Journal of Inequalities and Applications, 2017
  • [22] Exclusion sets in eigenvalue localization sets for tensors
    Sang, Caili
    Li, Chaoqian
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (12): : 2399 - 2409
  • [23] PARETO EIGENVALUE INCLUSION INTERVALS FOR TENSORS
    Xu, Yang
    Huang, Zheng-Hai
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (03) : 2123 - 2139
  • [24] Largest H-eigenvalue of uniform s-hypertrees
    Yuan Hou
    An Chang
    Lei Zhang
    Frontiers of Mathematics in China, 2018, 13 : 301 - 312
  • [25] Largest H-eigenvalue of uniform s-hypertrees
    Hou, Yuan
    Chang, An
    Zhang, Lei
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (02) : 301 - 312
  • [26] Some results on Brauer-type and Brualdi-type eigenvalue inclusion sets for tensors
    Xu, Yangyang
    Zheng, Bing
    Zhao, Ruijuan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02):
  • [27] Some results on Brauer-type and Brualdi-type eigenvalue inclusion sets for tensors
    Yangyang Xu
    Bing Zheng
    Ruijuan Zhao
    Computational and Applied Mathematics, 2019, 38
  • [28] Z-EIGENVALUE INCLUSION THEOREMS FOR TENSORS
    Wang, Gang
    Zhou, Guanglu
    Caccetta, Louis
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (01): : 187 - 198
  • [29] E-Eigenvalue Inclusion Theorems for Tensors
    Sang, Caili
    Zhao, Jianxing
    FILOMAT, 2019, 33 (12) : 3883 - 3891
  • [30] Pareto eigenvalue inclusion theorems and copositive tensors
    He, Jun
    Liu, Yanmin
    Shen, Xiaowei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 454