Adaptive hyperparameter optimization for black-box adversarial attack

被引:0
|
作者
Guan, Zhenyu [1 ]
Zhang, Lixin [1 ]
Huang, Bohan [1 ]
Zhao, Bihe [1 ]
Bian, Song [1 ]
机构
[1] Beihang Univ, Sch Cyber Sci & Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Adversarial attack; Reinforcement learning; Hyperparameter optimization; NETWORKS;
D O I
10.1007/s10207-023-00716-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The study of adversarial attacks is crucial in the design of robust neural network models. In this work, we propose a hyperparameter optimization framework for black-box adversarial attacks. We observe that hyperparameters are extremely important to enhance the query efficiency of many black-box adversarial attack methods. Hence, we propose an adaptive hyperparameter tuning framework such that, in each query iteration, the attacker can adaptively selects the hyperparameter configuration based on the feedback from the victim to improve the attack success rate and query efficiency of the attack algorithm. The experiment results show, by adaptively tuning the attack hyperparameters, our technique outperforms the original algorithm, where the query efficiency is improved by 33.63% on the NES algorithm for untargeted attacks, 44.47% on the Bandits algorithm for untargeted attacks, and 32.24% improvement on the Bandits algorithm for targeted attacks.
引用
下载
收藏
页码:1765 / 1779
页数:15
相关论文
共 50 条
  • [41] An adversarial attack on DNN-based black-box object detectors
    Wang, Yajie
    Tan, Yu-an
    Zhang, Wenjiao
    Zhao, Yuhang
    Kuang, Xiaohui
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2020, 161
  • [42] Black-box Adversarial Machine Learning Attack on Network Traffic Classification
    Usama, Muhammad
    Qayyum, Adnan
    Qadir, Junaid
    Al-Fuqaha, Ala
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 84 - 89
  • [43] TSadv: Black-box adversarial attack on time series with local perturbations
    Yang, Wenbo
    Yuan, Jidong
    Wang, Xiaokang
    Zhao, Peixiang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114
  • [44] Data-free Universal Adversarial Perturbation and Black-box Attack
    Zhang, Chaoning
    Benz, Philipp
    Karjauv, Adil
    Kweon, In So
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7848 - 7857
  • [45] Exploiting the Local Parabolic Landscapes of Adversarial Losses to Accelerate Black-Box Adversarial Attack
    Tran, Hoang
    Lu, Dan
    Zhang, Guannan
    COMPUTER VISION - ECCV 2022, PT V, 2022, 13665 : 317 - 334
  • [46] Dual stage black-box adversarial attack against vision transformer
    Wang, Fan
    Shao, Mingwen
    Meng, Lingzhuang
    Liu, Fukang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (08) : 3367 - 3378
  • [47] Targeted Black-Box Adversarial Attack Method for Image Classification Models
    Zheng, Su
    Chen, Jialin
    Wang, Lingli
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [48] Unrestricted Black-box Adversarial Attack Using GAN with Limited Queries
    Na, Dongbin
    Ji, Sangwoo
    Kim, Jong
    arXiv, 2022,
  • [49] Cyclical Adversarial Attack Pierces Black-box Deep Neural Networks
    Huang, Lifeng
    Wei, Shuxin
    Gao, Chengying
    Liu, Ning
    PATTERN RECOGNITION, 2022, 131
  • [50] Black-Box Adversarial Attack for Deep Learning Classifiers in IoT Applications
    Singh, Abhijit
    Sikdar, Biplab
    2022 IEEE 8TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2022,